A243148 Triangle read by rows: T(n,k) = number of partitions of n into k nonzero squares; n >= 0, 0 <= k <= n.
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 0
Examples
T(20,5) = 2 = #{ (16,1,1,1,1), (4,4,4,4,4) } since 20 = 4^2 + 4 * 1^2 = 5 * 2^2. Triangle T(n,k) begins: 1; 0, 1; 0, 0, 1; 0, 0, 0, 1; 0, 1, 0, 0, 1; 0, 0, 1, 0, 0, 1; 0, 0, 0, 1, 0, 0, 1; 0, 0, 0, 0, 1, 0, 0, 1; 0, 0, 1, 0, 0, 1, 0, 0, 1; 0, 1, 0, 1, 0, 0, 1, 0, 0, 1; 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1; 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1; 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1; (...)
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))) end: T:= (n, k)-> b(n, isqrt(n), k): seq(seq(T(n, k), k=0..n), n=0..14); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+(s-> `if`(s>n, 0, expand(x*b(n-s, i))))(i^2))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, isqrt(n))): seq(T(n), n=0..14); # Alois P. Heinz, Oct 30 2021
-
Mathematica
b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i-1, k, t] + If[i^2 > n, 0, b[n-i^2, i, k, t-1]]]]; T[n_, k_] := b[n, Sqrt[n] // Floor, k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 06 2014, after Alois P. Heinz *) T[n_, k_] := Count[PowersRepresentations[n, k, 2], r_ /; FreeQ[r, 0]]; T[0, 0] = 1; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2016 *)
-
PARI
T(n,k,L=n)=if(n>k*L^2, 0, k>n-3, k==n, k<2, issquare(n,&n) && n<=L*k, k>n-6, n-k==3, L=min(L,sqrtint(n-k+1)); sum(r=0,min(n\L^2,k-1),T(n-r*L^2,k-r,L-1), n==k*L^2)) \\ M. F. Hasler, Aug 03 2020