cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307643 Number of partitions of n^3 into exactly n positive cubes.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 0, 2, 6, 14, 23, 51, 108, 228, 511, 1158, 2500, 5603, 12304, 26969, 59222, 130115, 285370, 624965, 1368603, 2987117, 6517822, 14187920, 30823278, 66834822, 144671698, 312551894, 673913968, 1450292087, 3114720013, 6676277754, 14281662079
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2019

Keywords

Examples

			9^3 =
1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 5^3 + 8^3 =
1^3 + 1^3 + 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 6^3 =
1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 7^3 =
1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 =
1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 + 7^3 =
2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 7^3,
so a(9) = 6.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^3>n, 0, b(n-i^3, i, t-1))))
        end:
    a:= n-> b(n^3, n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 12 2019
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^3 > n, 0, b[n - i^3, i, t - 1]]]];
    a[n_] := b[n^3, n, n];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)

Formula

a(n) = A320841(n^3,n).

Extensions

More terms from Vaclav Kotesovec, Apr 20 2019

A307739 Number of partitions of n^4 into at most n fourth powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 5, 3, 5, 2, 27, 4, 78, 14, 152, 551, 1331, 7377, 15504, 87583, 190028, 768864, 1510305, 5413291, 12221733
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2019

Keywords

Examples

			10^4 =
4^4 + 4^4 + 6^4 + 8^4 + 8^4 =
2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4,
so a(10) = 3.
		

Crossrefs

Programs

  • Python
    from sympy.solvers.diophantine.diophantine import power_representation
    def a(n):
        if n < 2: return 1
        return sum(len(list(power_representation(n**4, 4, j))) for j in range(1, n+1))
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Jul 09 2024

Extensions

a(21)-a(27) from Michael S. Branicky, Jul 09 2024
Showing 1-2 of 2 results.