cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307738 Number of partitions of n^3 into at most n cubes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 4, 7, 18, 36, 66, 157, 329, 728, 1611, 3655, 8062, 18154, 40358, 89807, 199778, 444419, 984422, 2183461, 4827756, 10651083, 23465459, 51576034, 113092423, 247546849, 540538832, 1177836149, 2560897979, 5555722749, 12025952101, 25976048200
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2019

Keywords

Comments

Does a(n+1) / a(n) ~ 2? - David A. Corneth, Sep 27 2019

Examples

			7^3 =
1^3 + 1^3 + 5^3 + 6^3 =
1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 5^3 =
1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3,
so a(7) = 4.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(res = 0); res=aIterate(n^3, 1, n); res }
    aIterate(s, m, q) = { if(s == 0, return(1)); if(q == 0, return(0)); sum(i = m, sqrtnint(s, 3), aIterate(s - i^3, i, q-1) ) } \\ David A. Corneth, Sep 23 2019

Extensions

a(21)-a(36) from David A. Corneth, Sep 23 2019

A347592 Number of compositions (ordered partitions) of n^4 into at most n fourth powers.

Original entry on oeis.org

1, 1, 1, 1, 1, 31, 7, 31, 1, 1417, 391, 158341, 7, 15873901, 14001, 842422057, 579379362, 56336866681, 46619148182102, 778545853570143, 178899570114917382, 3463518647447701366, 503865540593731411886, 11759574310854845083219, 1403272743542390575650072
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2021

Keywords

Crossrefs

Extensions

a(19)-a(24) from Alois P. Heinz, Sep 08 2021
Showing 1-2 of 2 results.