cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319436 Number of palindromic plane trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 68, 122, 234, 426, 808, 1484, 2798, 5167, 9700, 17974, 33656, 62498, 116826, 217236, 405646, 754938, 1408736, 2623188, 4892848, 9114036, 16995110, 31664136, 59034488, 110004243, 205068892, 382156686, 712363344, 1327600346, 2474618434
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2018

Keywords

Comments

A rooted plane tree is palindromic if the sequence of branches directly under any given node is a palindrome.

Examples

			The a(7) = 20 palindromic plane trees:
  ((((((o))))))  (((((oo)))))  ((((ooo))))  (((oooo)))  ((ooooo))  (oooooo)
                 ((((o)(o))))  (((o(o)o)))  ((o(oo)o))  (o(ooo)o)
                 (((o))((o)))  ((o((o))o))  (o((oo))o)  (oo(o)oo)
                               (((o)o(o)))  ((oo)(oo))
                               (o(((o)))o)  ((o)oo(o))
                               ((o)(o)(o))  (o(o)(o)o)
		

Crossrefs

Programs

  • Mathematica
    panplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[panplane/@c],#==Reverse[#]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[panplane[n]],{n,10}]
  • PARI
    PAL(p)={(1+p)/subst(1-p, x, x^2)}
    seq(n)={my(p=O(1));for(i=1, n, p=PAL(x*p)); Vec(p)} \\ Andrew Howroyd, Sep 19 2018

Formula

a(n) ~ c * d^n, where d = 1.86383559155190653688720443906758855085492625375... and c = 0.24457511051198663873739022949952908293770055... - Vaclav Kotesovec, Nov 16 2021