A319438 a(n) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11^12 + 13^14 - ... + (up to n).
1, 1, -2, -80, -75, 15545, 15538, -5749256, -5749247, 3481035145, 3481035134, -3134947341576, -3134947341563, 3934241438357713, 3934241438357698, -6564474114274532912, -6564474114274532895, 14056519977953450458097, 14056519977953450458078
Offset: 1
Examples
a(1) = 1; a(2) = 1^2 = 1; a(3) = 1^2 - 3 = -2; a(4) = 1^2 - 3^4 = -80; a(5) = 1^2 - 3^4 + 5 = -75; a(6) = 1^2 - 3^4 + 5^6 = 15545; a(7) = 1^2 - 3^4 + 5^6 - 7 = 15538; a(8) = 1^2 - 3^4 + 5^6 - 7^8 = -5749256; a(9) = 1^2 - 3^4 + 5^6 - 7^8 + 9 = -5749247; a(10) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 = 3481035145; a(11) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11 = 3481035134; a(12) = 1^2 - 3^4 + 5^6 - 7^8 + 9^10 - 11^12 = -3134947341576; etc .
Links
- Colin Barker, Table of n, a(n) for n = 1..350
Programs
-
Mathematica
Table[n*Mod[n, 2]*(-1)^(Floor[n/2]) + Sum[(2*i - 1)^(2*i)*(-1)^(i - 1), {i, Floor[n/2]}], {n, 30}]
Formula
a(n) = n*(n mod 2)*(-1)^floor(n/2) + Sum_{i=1..floor(n/2)} (2*i - 1)^(2*i)*(-1)^(i - 1).
Comments