cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319455 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^2.

Original entry on oeis.org

1, 2, 7, 14, 35, 66, 140, 252, 485, 840, 1512, 2534, 4347, 7084, 11705, 18622, 29862, 46522, 72779, 111310, 170534, 256586, 386101, 572488, 848050, 1240974, 1812979, 2621486, 3782669, 5410360, 7720237, 10932740, 15443120, 21669546, 30327570, 42196022, 58555543, 80832850
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2018

Keywords

Comments

Convolution inverse of A002171.
Self-convolution of A002513.
Convolution of A000041 and A029862.
Euler transform of period 2 sequence [2, 4, ...].

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(2*k)))^2,k=1..55),x=0,38): seq(coeff(a,x,n),n=0..37); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 37; CoefficientList[Series[Product[1/((1 - x^k)*(1 - x^(2*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^2])^2, {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[Exp[2 Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    seq(n)={Vec(exp(2*sum(k=1, n, (4*sigma(k) - sigma(2*k))*x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Sep 19 2018

Formula

G.f.: Product_{k>=1} (1 + x^k)^2/(1 - x^(2*k))^4.
G.f.: exp(2*Sum_{k>=1} (4*sigma(k) - sigma(2*k))*x^k/k).
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(13/4)*n^(7/4)). - Vaclav Kotesovec, Sep 14 2021