cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319495 Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that for k>0 the k-th letter occurs at least once and within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 5, 6, 0, 5, 20, 18, 24, 0, 7, 46, 86, 84, 120, 0, 11, 137, 347, 456, 480, 720, 0, 15, 313, 1216, 2136, 2940, 3240, 5040, 0, 22, 836, 4253, 11128, 15300, 22200, 25200, 40320, 0, 30, 1908, 15410, 44308, 90024, 127680, 191520, 221760, 362880
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2018

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k <= n. T(n,k) = 0 for k > n.

Examples

			T(3,1) = 3: {aaa}, {aa,a}, {a,a,a}.
T(3,2) = 5: {aab}, {aba}, {baa}, {ab,a}, {ba,a}.
T(3,3) = 6: {abc}, {acb}, {bac}, {bca}, {cab}, {cba}.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,   5,    6;
  0,  5,  20,   18,    24;
  0,  7,  46,   86,    84,   120;
  0, 11, 137,  347,   456,   480,   720;
  0, 15, 313, 1216,  2136,  2940,  3240,  5040;
  0, 22, 836, 4253, 11128, 15300, 22200, 25200, 40320;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000041 (for n>0).
Row sums give A292713.
Main diagonal gives A000142.
First lower diagonal gives A038720.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(t=1, 1/n!,
          add(b(n-j, j, t-1)/j!, j=i..n/t))
        end:
    g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          g(d, k), d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n)
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!,
         Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
    g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]];
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*
         g[d, k], {d, Divisors[j]}]*A[n - j, k], {j, 1, n}]/n];
    T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)

Formula

T(n,k) = A292712(n,k) - A292712(n,k-1) for k > 0, T(n,0) = A000007(n).