A319495 Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that for k>0 the k-th letter occurs at least once and within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 2, 0, 3, 5, 6, 0, 5, 20, 18, 24, 0, 7, 46, 86, 84, 120, 0, 11, 137, 347, 456, 480, 720, 0, 15, 313, 1216, 2136, 2940, 3240, 5040, 0, 22, 836, 4253, 11128, 15300, 22200, 25200, 40320, 0, 30, 1908, 15410, 44308, 90024, 127680, 191520, 221760, 362880
Offset: 0
Examples
T(3,1) = 3: {aaa}, {aa,a}, {a,a,a}. T(3,2) = 5: {aab}, {aba}, {baa}, {ab,a}, {ba,a}. T(3,3) = 6: {abc}, {acb}, {bac}, {bca}, {cab}, {cba}. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 2; 0, 3, 5, 6; 0, 5, 20, 18, 24; 0, 7, 46, 86, 84, 120; 0, 11, 137, 347, 456, 480, 720; 0, 15, 313, 1216, 2136, 2940, 3240, 5040; 0, 22, 836, 4253, 11128, 15300, 22200, 25200, 40320; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d* g(d, k), d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n) end: T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d* g[d, k], {d, Divisors[j]}]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 09 2021, after Alois P. Heinz *)
Comments