A292712 Number A(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 4, 8, 5, 0, 1, 1, 4, 14, 25, 7, 0, 1, 1, 4, 14, 43, 53, 11, 0, 1, 1, 4, 14, 67, 139, 148, 15, 0, 1, 1, 4, 14, 67, 223, 495, 328, 22, 0, 1, 1, 4, 14, 67, 343, 951, 1544, 858, 30, 0, 1, 1, 4, 14, 67, 343, 1431, 3680, 5111, 1938, 42, 0
Offset: 0
Examples
A(2,3) = 4: {aa}, {ab}, {ba}, {a,a}. A(3,2) = 8: {aaa}, {aab}, {aba}, {baa}, {aa,a}, {ab,a}, {ba,a}, {a,a,a}. A(3,3) = 14: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}, {a,a,a}. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 2, 4, 4, 4, 4, 4, 4, 4, ... 0, 3, 8, 14, 14, 14, 14, 14, 14, ... 0, 5, 25, 43, 67, 67, 67, 67, 67, ... 0, 7, 53, 139, 223, 343, 343, 343, 343, ... 0, 11, 148, 495, 951, 1431, 2151, 2151, 2151, ... 0, 15, 328, 1544, 3680, 6620, 9860, 14900, 14900, ... 0, 22, 858, 5111, 16239, 31539, 53739, 78939, 119259, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d* g(d, k), d=numtheory[divisors](j))*A(n-j, k), j=1..n)/n) end: seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[Sum[d*g[d, k], {d, Divisors[j]}]* A[n - j, k], {j, 1, n}]/n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 07 2018, from Maple *)
Comments