A292795 Number A(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 7, 2, 0, 1, 1, 3, 13, 18, 3, 0, 1, 1, 3, 13, 36, 42, 4, 0, 1, 1, 3, 13, 60, 122, 110, 5, 0, 1, 1, 3, 13, 60, 206, 433, 250, 6, 0, 1, 1, 3, 13, 60, 326, 865, 1356, 627, 8, 0, 1, 1, 3, 13, 60, 326, 1345, 3408, 4449, 1439, 10, 0
Offset: 0
Examples
A(2,3) = 3: {aa}, {ab}, {ba}. A(3,2) = 7: {aaa}, {aab}, {aba}, {baa}, {aa,a}, {ab,a}, {ba,a}. A(3,3) = 13: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 3, 3, 3, 3, 3, 3, 3, ... 0, 2, 7, 13, 13, 13, 13, 13, 13, ... 0, 2, 18, 36, 60, 60, 60, 60, 60, ... 0, 3, 42, 122, 206, 326, 326, 326, 326, ... 0, 4, 110, 433, 865, 1345, 2065, 2065, 2065, ... 0, 5, 250, 1356, 3408, 6228, 9468, 14508, 14508, ... 0, 6, 627, 4449, 15025, 29845, 51325, 76525, 116845, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t)) end: g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i))) end: A:= (n, k)-> h(n$2, min(n, k)): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[g[i, k], j], {j, 0, n/i}]]]; A[n_, k_] := h[n, n, Min[n, k]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten(* Jean-François Alcover, Jan 02 2021, after Alois P. Heinz *)
Comments