A319496 Numbers whose prime indices are distinct and pairwise indivisible and whose own prime indices are connected and span an initial interval of positive integers.
2, 3, 7, 13, 19, 37, 53, 61, 89, 91, 113, 131, 151, 223, 247, 251, 281, 299, 311, 359, 377, 427, 463, 503, 593, 611, 659, 689, 703, 719, 791, 827, 851, 863, 923, 953, 1069, 1073, 1159, 1163, 1291, 1321, 1339, 1363, 1511, 1619, 1703, 1733, 1739, 1757, 1769
Offset: 1
Keywords
Examples
The sequence of multisystems whose MM-numbers belong to the sequence begins: 2: {{}} 3: {{1}} 7: {{1,1}} 13: {{1,2}} 19: {{1,1,1}} 37: {{1,1,2}} 53: {{1,1,1,1}} 61: {{1,2,2}} 89: {{1,1,1,2}} 91: {{1,1},{1,2}} 113: {{1,2,3}} 131: {{1,1,1,1,1}} 151: {{1,1,2,2}} 223: {{1,1,1,1,2}} 247: {{1,2},{1,1,1}} 251: {{1,2,2,2}} 281: {{1,1,2,3}} 299: {{1,2},{2,2}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]]; zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[200],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],stableQ[primeMS[#],Divisible],Length[zsm[primeMS[#]]]==1]&]
Comments