cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319512 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.

Original entry on oeis.org

1, 3, 11, 42, 161, 616, 2352, 8967, 34153, 129997, 494606, 1881355, 7154980, 27208132, 103456689, 393367835, 1495638123, 5686513994, 21620239081, 82199944512, 312521862408, 1188195487255, 4517461948657, 17175149855885, 65298950120782, 248262786503683
Offset: 0

Views

Author

Kai Wang, Dec 10 2018

Keywords

Comments

Let {X,Y,Z} be the roots of the cubic equation
t^3 + at^2 + bt + c = 0
where {a, b, c} are integers. Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers. Then
{p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...}
is an integer sequence with the recurrence relation:
p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
This sequence has (a, b, c) = (-7, 14, -7), (u, v, w) = (1/(sqrt(7)*tan(4*(Pi/7))), 1/(sqrt(7)*tan(8*(Pi/7))), 1/(sqrt(7)*tan(2*(Pi/7)))).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -14, 7}, {1, 3, 11}, 30] (* Amiram Eldar, Dec 10 2018 *)
    CoefficientList[Series[(1-2x)^2/(1-7x+14x^2-7x^3),{x,0,30}],x] (* Harvey P. Dale, Oct 08 2023 *)
  • PARI
    Vec((1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3) + O(x^40)) \\ Colin Barker, Dec 11 2018

Formula

(X, Y, Z) = (4*sin^2(2*(Pi/7)), 4*sin^2(4*(Pi/7)), 4*sin^2(8*(Pi/7)));
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.
G.f.: (1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3). - Colin Barker, Dec 11 2018

Extensions

More terms from Felix Fröhlich, Dec 10 2018