A319546 a(n) = 1*2*3*4*5*6 - 7*8*9*10*11*12 + 13*14*15*16*17*18 - ... + (up to n).
1, 2, 6, 24, 120, 720, 713, 664, 216, -4320, -54720, -664560, -664547, -664378, -661830, -620880, 78000, 12701520, 12701501, 12701140, 12693540, 12525960, 8663640, -84207600, -84207575, -84206950, -84190050, -83716200, -69957000, 343310400, 343310369
Offset: 1
Examples
a(1) = 1; a(2) = 1*2 = 2; a(3) = 1*2*3 = 6; a(4) = 1*2*3*4 = 24; a(5) = 1*2*3*4*5 = 120; a(6) = 1*2*3*4*5*6 = 720; a(7) = 1*2*3*4*5*6 - 7 = 713; a(8) = 1*2*3*4*5*6 - 7*8 = 664; a(9) = 1*2*3*4*5*6 - 7*8*9 = 216; a(10) = 1*2*3*4*5*6 - 7*8*9*10 = -4320; a(11) = 1*2*3*4*5*6 - 7*8*9*10*11 = -54720; a(12) = 1*2*3*4*5*6 - 7*8*9*10*11*12 = -664560; a(13) = 1*2*3*4*5*6 - 7*8*9*10*11*12 + 13 = -664547; a(14) = 1*2*3*4*5*6 - 7*8*9*10*11*12 + 13*14 = -664378; a(15) = 1*2*3*4*5*6 - 7*8*9*10*11*12 + 13*14*15 = -661830; a(16) = 1*2*3*4*5*6 - 7*8*9*10*11*12 + 13*14*15*16 = -620880; a(17) = 1*2*3*4*5*6 - 7*8*9*10*11*12 + 13*14*15*16*17 = 78000; etc.
Crossrefs
Programs
-
Mathematica
a[n_]:=(-1)^Floor[n/6]*Sum[(1-Sign[Mod[n-i,6]])*Product[n-j+1,{j,1,i}],{i,1,5}]+Sum[(-1)^(Floor[i/6]+1)*(1-Sign[Mod[i,6]])*Product[i-j+1,{j,1,5}],{i,1,n}]; Array[a, 30] (* Stefano Spezia, Sep 23 2018 *)
Formula
a(n) = (-1)^floor(n/6) * Sum_{i=1..5} (1-sign((n-i) mod 6)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/6)+1) * (1-sign(i mod 6)) * (Product_{j=1..6} (i-j+1)).
Comments