cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319557 Number of non-isomorphic strict connected multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 5, 12, 30, 91, 256, 823, 2656, 9103, 31876, 116113, 432824, 1659692, 6508521, 26112327, 106927561, 446654187, 1900858001, 8236367607, 36306790636, 162724173883, 741105774720, 3428164417401, 16099059101049, 76722208278328, 370903316203353, 1818316254655097
Offset: 0

Views

Author

Gus Wiseman, Sep 23 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of non-isomorphic connected T_0 multiset partitions of weight n. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. The T_0 condition means that there are no equivalent vertices.

Examples

			Non-isomorphic representatives of the a(4) = 12 strict connected multiset partitions:
    {{1,1,1,1}}
    {{1,1,2,2}}
    {{1,2,2,2}}
    {{1,2,3,3}}
    {{1,2,3,4}}
   {{1},{1,1,1}}
   {{1},{1,2,2}}
   {{2},{1,2,2}}
   {{3},{1,2,3}}
   {{1,2},{2,2}}
   {{1,3},{2,3}}
  {{1},{2},{1,2}}
Non-isomorphic representatives of the a(4) = 12 connected T_0 multiset partitions:
     {{1,1,1,1}}
     {{1,2,2,2}}
    {{1},{1,1,1}}
    {{1},{1,2,2}}
    {{2},{1,2,2}}
    {{1,1},{1,1}}
    {{1,2},{2,2}}
    {{1,3},{2,3}}
   {{1},{1},{1,1}}
   {{1},{2},{1,2}}
   {{2},{2},{1,2}}
  {{1},{1},{1},{1}}
		

Crossrefs

Formula

Inverse Euler transform of A316980.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023