A319582 Square array T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]) read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1
Offset: 1
Examples
T(60, 50) = T(2^2 * 3^1 * 5^1, 2^1 * 5^2) = T(2^2, 2^1) * T(3^1, 3^0) * T(5^1, 5^2) = 2^[2 >= 1 > 0] * 2^[1 >= 0 > 0] * 2^[1 >= 2 > 0] = 2^1 * 2^0 * 2^0 = 2 * 1 * 1 = 2. Array begins: k = 1 1 1 n 1 2 3 4 5 6 7 8 9 0 1 2 = ------------------------ 1 | 1 1 1 1 1 1 1 1 1 1 1 1 2 | 1 2 1 1 1 2 1 1 1 2 1 1 3 | 1 1 2 1 1 2 1 1 1 1 1 2 4 | 1 2 1 2 1 2 1 1 1 2 1 2 5 | 1 1 1 1 2 1 1 1 1 2 1 1 6 | 1 2 2 1 1 4 1 1 1 2 1 2 7 | 1 1 1 1 1 1 2 1 1 1 1 1 8 | 1 2 1 2 1 2 1 2 1 2 1 2 9 | 1 1 2 1 1 2 1 1 2 1 1 2 10 | 1 2 1 1 2 2 1 1 1 4 1 1 11 | 1 1 1 1 1 1 1 1 1 1 2 1 12 | 1 2 2 2 1 4 1 1 1 2 1 4
Programs
-
Mathematica
F[n_] := If[n == 1, {}, FactorInteger[n]] V[p_] := If[KeyExistsQ[#, p], #[p], 0] & PreT[n_, k_] := Module[{fn = F[n], fk = F[k], p, an = <||>, ak = <||>, w}, p = Union[First /@ fn, First /@ fk]; (an[#[[1]]] = #[[2]]) & /@ fn; (ak[#[[1]]] = #[[2]]) & /@ fk; w = ({V[#][an], V[#][ak]}) & /@ p; Select[w, (#[[1]] >= #[[2]] > 0) &] ] T[n_, k_] := 2^Length[PreT[n, k]] A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1 A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2] a[n_] := T[A004736[n], A002260[n]] Table[a[n], {n, 1, 90}]
-
PARI
maxp(n) = if (n==1, 1, vecmax(factor(n)[,1])); T(n, k) = {pmax = max(maxp(n), maxp(k)); x = 0; forprime(p=2, pmax, if ((valuation(n, p) >= valuation(k, p)) && (valuation(k, p) > 0), x ++);); 2^x;} \\ Michel Marcus, Oct 28 2018
Comments