cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319582 Square array T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]) read by antidiagonals up, where [] is the Iverson bracket and v_p is the p-adic valuation, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

Luc Rousseau, Sep 24 2018

Keywords

Comments

T(n, k) is the number of integers located on the sphere with center n and radius log(k), when the metric is given by log(A089913).
T(., k) is multiplicative and k-periodic.
T(n, .) is multiplicative and n^2-periodic.

Examples

			T(60, 50) = T(2^2 * 3^1 * 5^1, 2^1 * 5^2)
  = T(2^2, 2^1) * T(3^1, 3^0) * T(5^1, 5^2)
  = 2^[2 >= 1 > 0] * 2^[1 >= 0 > 0] * 2^[1 >= 2 > 0]
  = 2^1 * 2^0 * 2^0 = 2 * 1 * 1 = 2.
Array begins:
     k =                 1 1 1
   n   1 2 3 4 5 6 7 8 9 0 1 2
   =  ------------------------
   1 | 1 1 1 1 1 1 1 1 1 1 1 1
   2 | 1 2 1 1 1 2 1 1 1 2 1 1
   3 | 1 1 2 1 1 2 1 1 1 1 1 2
   4 | 1 2 1 2 1 2 1 1 1 2 1 2
   5 | 1 1 1 1 2 1 1 1 1 2 1 1
   6 | 1 2 2 1 1 4 1 1 1 2 1 2
   7 | 1 1 1 1 1 1 2 1 1 1 1 1
   8 | 1 2 1 2 1 2 1 2 1 2 1 2
   9 | 1 1 2 1 1 2 1 1 2 1 1 2
  10 | 1 2 1 1 2 2 1 1 1 4 1 1
  11 | 1 1 1 1 1 1 1 1 1 1 2 1
  12 | 1 2 2 2 1 4 1 1 1 2 1 4
		

Crossrefs

Cf. A319581 (an additive variant).

Programs

  • Mathematica
    F[n_] := If[n == 1, {}, FactorInteger[n]]
    V[p_] := If[KeyExistsQ[#, p], #[p], 0] &
    PreT[n_, k_] :=
    Module[{fn = F[n], fk = F[k], p, an = <||>, ak = <||>, w},
      p = Union[First /@ fn, First /@ fk];
      (an[#[[1]]] = #[[2]]) & /@ fn;
      (ak[#[[1]]] = #[[2]]) & /@ fk;
      w = ({V[#][an], V[#][ak]}) & /@ p;
      Select[w, (#[[1]] >= #[[2]] > 0) &]
      ]
    T[n_, k_] := 2^Length[PreT[n, k]]
    A004736[n_] := Binomial[Floor[3/2 + Sqrt[2*n]], 2] - n + 1
    A002260[n_] := n - Binomial[Floor[1/2 + Sqrt[2*n]], 2]
    a[n_] := T[A004736[n], A002260[n]]
    Table[a[n], {n, 1, 90}]
  • PARI
    maxp(n) = if (n==1, 1, vecmax(factor(n)[,1]));
    T(n, k) = {pmax = max(maxp(n), maxp(k)); x = 0; forprime(p=2, pmax, if ((valuation(n, p) >= valuation(k, p)) && (valuation(k, p) > 0), x ++);); 2^x;} \\ Michel Marcus, Oct 28 2018

Formula

T(n, k) = card({x; d(n, x) = log(k)}), if d denotes log(A089913(., .)), which is a metric.
T(n, k) = 2 ^ (Sum_{p prime} [v_p(n) >= v_p(k) > 0]).
a(n) = 2 ^ A319581(n).
T(n, n) = 2 ^ A001221(n) = A034444(n).