A319600 Number T(n,k) of plane partitions of n into parts of exactly k sorts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 3, 4, 0, 6, 22, 18, 0, 13, 96, 198, 120, 0, 24, 330, 1272, 1800, 840, 0, 48, 1146, 7518, 19152, 20640, 7920, 0, 86, 3518, 36684, 148200, 274080, 234720, 75600, 0, 160, 10946, 177438, 1080960, 3083640, 4462560, 3180240, 887040, 0, 282, 32102, 788928, 6952440, 28621920, 62056080, 73175760, 44432640, 10886400
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 3, 4; 0, 6, 22, 18; 0, 13, 96, 198, 120; 0, 24, 330, 1272, 1800, 840; 0, 48, 1146, 7518, 19152, 20640, 7920; 0, 86, 3518, 36684, 148200, 274080, 234720, 75600; 0, 160, 10946, 177438, 1080960, 3083640, 4462560, 3180240, 887040; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Eric Weisstein's World of Mathematics, Plane partition
- Wikipedia, Plane partition