cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319610 a(n) is the minimal number of successive OFF cells that appears in n-th generation of rule-30 1D cellular automaton started from a single ON cell.

Original entry on oeis.org

0, 0, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Philipp O. Tsvetkov, Sep 24 2018

Keywords

Comments

OFF cells outside the triangle of active cells are ignored.

Examples

			The Rule-30 1D cellular automaton started from a single ON (.) cell generates the following triangle:
1                          .                             a(1)= (0)
2                        . . .                           a(2)= (0)
3                      . . 0 0 .                         a(3)= (2)
4                    . . 0 . . . .                       a(4)= (1)
5                  . . 0 0 . 0 0 0 .                     a(5)= (2)
6                . . 0 . . . . 0 . . .                   a(6)= (1)
7              . . 0 0 . 0 0 0 0 . 0 0 .                 a(7)= (2)
8            . . 0 . . . . 0 0 . . . . . .               a(8)= (1)
9          . . 0 0 . 0 0 0 . . . 0 0 0 0 0 .             a(9)= (2)
10       . . 0 . . . . 0 . . 0 0 . 0 0 0 . . .           a(10)=(1)
11     . . 0 0 . 0 0 0 0 . 0 . . . . 0 . . 0 0 .         a(11)=(1)
12   . . 0 . . . . 0 0 . . 0 . 0 0 0 0 . 0 . . . .       a(12)=(1)
13 . . 0 0 . 0 0 0 . . . 0 0 . . 0 0 . . 0 . 0 0 0 .     a(13)=(1)
		

Crossrefs

Cf. A100053.

Programs

  • Mathematica
    CellularAutomaton[30, {{1}, 0}, 200];
    (Reverse[Internal`DeleteTrailingZeros[Reverse[Internal`DeleteTrailingZeros[#]]]]) & /@ %;
    Table[Length /@ Select[%[[i]] // Split, Total[#] == 0 &] // Min, {i, 1, % // Length}]

Formula

G.f.: x (x + x/(1 - x) + x^3 + x^5 + x^7) (conjectured).
For n > 9, a(n)=1 at least up to n = 20000.
It is conjectured that for all n>=10, a(n)=1.
A period-4 pattern of length-1 runs starting at row 26 forces a(n) = 1 for all n >= 26 (see image). - Charlie Neder, Dec 15 2018