cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A319658 a(n) is the minimal number of successive ON cells that appears in n-th generation of rule-30 1D cellular automaton started from a single ON cell.

Original entry on oeis.org

1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Philipp O. Tsvetkov, Sep 25 2018

Keywords

Examples

			The Rule-30 1D cellular automaton started from a single ON (.) cell generates the following triangle:
1                          .                             a(1)= (1)
2                        . . .                           a(2)= (3)
3                      . . 0 0 .                         a(3)= (1)
4                    . . 0 . . . .                       a(4)= (2)
5                  . . 0 0 . 0 0 0 .                     a(5)= (1)
6                . . 0 . . . . 0 . . .                   a(6)= (2)
7              . . 0 0 . 0 0 0 0 . 0 0 .                 a(7)= (1)
8            . . 0 . . . . 0 0 . . . . . .               a(8)= (2)
9          . . 0 0 . 0 0 0 . . . 0 0 0 0 0 .             a(9)= (1)
10       . . 0 . . . . 0 . . 0 0 . 0 0 0 . . .           a(10)=(1)
11     . . 0 0 . 0 0 0 0 . 0 . . . . 0 . . 0 0 .         a(11)=(1)
12   . . 0 . . . . 0 0 . . 0 . 0 0 0 0 . 0 . . . .       a(12)=(1)
13 . . 0 0 . 0 0 0 . . . 0 0 . . 0 0 . . 0 . 0 0 0 .     a(13)=(1)
		

Crossrefs

Programs

  • Mathematica
    CellularAutomaton[30, {{1}, 0}, 100];
    (Reverse[Internal`DeleteTrailingZeros[
          Reverse[Internal`DeleteTrailingZeros[#]]]]) & /@ %;
    Table[Length /@ Select[%[[i]] // Split, Total[#] > 0 &] // Min, {i,
      1, % // Length}]

Formula

G.f.: 1/(1 - x) + 2 x + x^3 + x^5 + x^7 + x^13 (conjectured).
For n > 14, a(n)=1 at least until n = 10000.
It is conjectured that for all n >= 15, a(n)=1.
A period-4 pattern of length-1 runs beginning on row 19 forces a(n) = 1 for all n >= 19 (see image). - Charlie Neder, Dec 15 2018
Showing 1-1 of 1 results.