A319646 Number of non-isomorphic weight-n chains of distinct multisets whose dual is also a chain of distinct multisets.
1, 1, 1, 4, 4, 9, 17, 28, 41, 75, 122, 192, 314, 484, 771, 1216, 1861, 2848, 4395, 6610, 10037
Offset: 0
Examples
Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 chains: 1: {{1}} 2: {{1,1}} 3: {{1,1,1}} {{1,2,2}} {{1},{1,1}} {{2},{1,2}} 4: {{1,1,1,1}} {{1,2,2,2}} {{1},{1,1,1}} {{2},{1,2,2}} 5: {{1,1,1,1,1}} {{1,1,2,2,2}} {{1,2,2,2,2}} {{1},{1,1,1,1}} {{2},{1,1,2,2}} {{2},{1,2,2,2}} {{1,1},{1,1,1}} {{1,2},{1,2,2}} {{2,2},{1,2,2}}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]]; Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And[UnsameQ@@#,UnsameQ@@Transpose[PadRight[#]],And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]],{y,IntegerPartitions[n]}],{n,10}] (* Gus Wiseman, Jan 18 2019 *)
Extensions
a(11)-a(17) from Gus Wiseman, Jan 18 2019
a(18)-a(21) from Robert Price, Jun 21 2021
Comments