cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A319616 Number of non-isomorphic square multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices.
Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1}, {2}}
3: {{1,1,1}}
   {{1}, {2,2}}
   {{2}, {1,2}}
   {{1}, {2},{3}}
4: {{1,1,1,1}}
   {{1}, {1,2,2}}
   {{1}, {2,2,2}}
   {{2}, {1,2,2}}
   {{1,1}, {2,2}}
   {{1,2}, {1,2}}
   {{1,2}, {2,2}}
   {{1}, {1}, {2,3}}
   {{1}, {2}, {3,3}}
   {{1}, {3}, {2,3}}
   {{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0]   [1 0]   [0 1]   [2 0]   [1 1]   [1 1]
. [1 2]   [0 3]   [1 2]   [0 2]   [1 1]   [0 2]
.
. [1 0 0]   [1 0 0]   [1 0 0]
. [1 0 0]   [0 1 0]   [0 0 1]
. [0 1 1]   [0 0 2]   [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for M.
    a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ Andrew Howroyd, Nov 15 2018
    
  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024

A319721 Number of non-isomorphic antichains of multisets of weight n.

Original entry on oeis.org

1, 1, 4, 8, 24, 50, 148, 349, 1014, 2717, 8114
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2018

Keywords

Comments

In an antichain, no part is a proper submultiset of any other. The weight of an antichain is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 8 antichains:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
   {{1},{2}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,2,3}}
   {{1},{2,2}}
   {{1},{2,3}}
   {{1},{1},{1}}
   {{1},{2},{2}}
   {{1},{2},{3}}
		

Crossrefs

A318099 Number of non-isomorphic weight-n antichains of (not necessarily distinct) multisets whose dual is also an antichain of (not necessarily distinct) multisets.

Original entry on oeis.org

1, 1, 4, 7, 19, 32, 81, 142, 337, 659, 1564
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 antichains:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
   {{1},{2}}
3: {{1,1,1}}
   {{1,2,3}}
   {{1},{2,2}}
   {{1},{2,3}}
   {{1},{1},{1}}
   {{1},{2},{2}}
   {{1},{2},{3}}
		

Crossrefs

A319637 Number of non-isomorphic T_0-covers of n vertices by distinct sets.

Original entry on oeis.org

1, 1, 3, 29, 1885, 18658259
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict (no repeated elements).

Examples

			Non-isomorphic representatives of the a(3) = 29 covers:
   {{1,3},{2,3}}
   {{1},{2},{3}}
   {{1},{3},{2,3}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
   {{3},{1,3},{2,3}}
   {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1},{2},{3},{2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2,3}}
   {{1},{2},{1,3},{2,3}}
   {{2},{3},{1,3},{2,3}}
   {{1},{3},{2,3},{1,2,3}}
   {{2},{3},{2,3},{1,2,3}}
   {{3},{1,2},{1,3},{2,3}}
   {{2},{1,3},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,3},{2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{2,3},{1,2,3}}
   {{2},{3},{1,2},{1,3},{2,3}}
   {{1},{2},{1,3},{2,3},{1,2,3}}
   {{2},{3},{1,3},{2,3},{1,2,3}}
   {{3},{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2},{1,3},{2,3}}
   {{1},{2},{3},{1,3},{2,3},{1,2,3}}
   {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Extensions

a(5) from Max Alekseyev, Jul 13 2022

A114736 Number of planar partitions of n where parts strictly decrease along each row and column.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 10, 15, 22, 33, 49, 70, 102, 146, 205, 290, 405, 561, 779, 1071, 1463, 1999, 2714, 3667, 4946, 6641, 8880, 11848, 15753, 20870, 27586, 36354, 47766, 62621, 81878, 106785, 138975, 180449, 233778, 302270, 390027, 502256, 645603, 828330, 1060851
Offset: 0

Views

Author

Keywords

Comments

If these partitions are "flattened" into a simple partition, the resulting partitions are those for which any part size present with multiplicity k implies the presence of at least k(k-1)/2 larger parts. E.g., [3,1|1] flattens to [3,1^2], 1 has multiplicity 2, so there must be at least 2*1/2 = 1 part larger than 1 - which is the 3.

Examples

			For n = 5, we have the 6 partitions [5], [4,1], [4|1], [3,2], [3|2] and [3,1|1].
From _Gus Wiseman_, Nov 15 2018: (Start)
The a(6) = 10 plane partitions:
  6   5 1   4 2   3 2 1
.
  5   4 1   4   3 2   3 1
  1   1     2   1     2
.
  3
  2
  1
(End)
		

References

  • B. Gordon, Multirowed partitions with strict decrease along columns (Notes on plane partitions IV.), Symposia Amer. Math. Soc. 19 (1971) 91-100.

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],And@@(OrderedQ[#,Greater]&/@prs2mat[#]),And@@(OrderedQ[#,Greater]&/@Transpose[prs2mat[#]])]&]],{n,5}] (* Gus Wiseman, Nov 15 2018 *)

Extensions

Clarified definition, added 30 terms and reference. - Dennis K Moore, Jan 12 2011
a(40)-a(44) from Alois P. Heinz, Sep 26 2018

A117433 Number of planar partitions of n with all part sizes distinct.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 149, 187, 243, 321, 413, 527, 735, 895, 1165, 1467, 1885, 2335, 2997, 3853, 4765, 5977, 7473, 9269, 11531, 14255, 17537, 22201, 26897, 33233, 40613, 50027, 60637, 74459, 89963, 109751, 134407, 162117, 195859
Offset: 0

Views

Author

Franklin T. Adams-Watters, Mar 16 2006, Apr 01 2008

Keywords

Comments

Matches A072706 for n < 10, since a unimodal composition into distinct parts can be placed uniquely as a hook. Starting with n = 10, additional partitions are possible (starting with [4,3|2,1] and [4,2|3,1]).

Examples

			From _Gus Wiseman_, Nov 15 2018: (Start)
The a(10) = 35 strict plane partitions (A = 10):
  A  64  73  82  532  91  541  631  721  4321
.
  9  54  63  72  432  8  53  71  431  7  43  52  61  421  6  42  51
  1  1   1   1   1    2  2   2   2    3  21  3   3   3    4  31  4
.
  7  6  5  43  42  5  41
  2  3  4  2   3   3  3
  1  1  1  1   1   2  2
.
  4
  3
  2
  1
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    g:= proc(n) g(n):= `if`(n<2, 1, (n-1)*g(n-2) +g(n-1)) end:
    a:= proc(n) b(n, n); add(%[i]*g(i-1), i=1..nops(%)) end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 18 2012
  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@DeleteCases[Join@@prs2mat[#],0],And@@(OrderedQ[#,Greater]&/@prs2mat[#]),And@@(OrderedQ[#,Greater]&/@Transpose[prs2mat[#]])]&]],{n,5}] (* Gus Wiseman, Nov 15 2018 *)
    zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, zip[Plus, b[n, i - 1], If[i > n, {}, Join[{0}, b[n - i, i - 1]]], 0]]];
    g[n_] := g[n] = If[n < 2, 1, (n - 1)*g[n - 2] + g[n - 1]];
    a[n_] := With[{bn = b[n, n]}, Sum[bn[[i]]*g[i - 1], {i, 1, Length[bn]}]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} A000085(k)*A008289(n,k).

A319719 Number of non-isomorphic connected antichains of multisets of weight n.

Original entry on oeis.org

1, 1, 3, 4, 10, 14, 48, 95, 305, 822, 2615
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2018

Keywords

Comments

In an antichain, no part is a proper submultiset of any other. The weight of an antichain is the sum of sizes of its parts. Weight is generally not the same as number of vertices. Connected antichains are also called clutters.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 10 connected antichains:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
3: {{1,1,1}}
   {{1,2,2}}
   {{1,2,3}}
   {{1},{1},{1}}
4: {{1,1,1,1}}
   {{1,1,2,2}}
   {{1,2,2,2}}
   {{1,2,3,3}}
   {{1,2,3,4}}
   {{1,1},{1,1}}
   {{1,2},{1,2}}
   {{1,2},{2,2}}
   {{1,3},{2,3}}
   {{1},{1},{1},{1}}
		

Crossrefs

A321645 Number of distinct row/column permutations of plane partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 32, 96, 290, 864, 2502, 7134, 20081
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(3) = 11 permutations of plane partitions:
  [3] [2 1] [1 2] [1 1 1]
.
  [2] [1 1] [1 1] [1] [1 0] [0 1]
  [1] [1 0] [0 1] [2] [1 1] [1 1]
.
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Mathematica
    submultisetQ[M_,N_]:=Or[Length[M]==0,MatchQ[{Sort[List@@M],Sort[List@@N]},{{x_,Z___},{_,x_,W___}}/;submultisetQ[{Z},{W}]]];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Sort[Map[Last,GatherBy[Sort[Reverse/@#],First],{2}],submultisetQ],submultisetQ],OrderedQ[Sort[Sort/@Map[Last,GatherBy[#,First],{2}],submultisetQ],submultisetQ]]&]],{n,6}]

A319639 Number of antichain covers of n vertices by distinct sets whose dual is also an antichain of distinct sets.

Original entry on oeis.org

1, 1, 1, 2, 20, 2043
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.

Examples

			The a(1) = 1 through a(3) = 2 antichain covers:
1: {{1}}
2: {{1},{2}}
3: {{1},{2},{3}}
   {{1,2},{1,3},{2,3}}
		

Crossrefs

A321653 Number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with strictly decreasing row sums and column sums.

Original entry on oeis.org

1, 1, 1, 5, 5, 14, 44, 72, 147, 381, 1405
Offset: 0

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Examples

			The a(5) = 14 matrices:
  [5] [4 1] [3 2]
.
  [4] [4 0] [3 1] [3 1] [3] [3 0] [3 0] [2 2] [2 1] [2 1] [1 2]
  [1] [0 1] [1 0] [0 1] [2] [1 1] [0 2] [1 0] [2 0] [1 1] [2 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],OrderedQ[Total/@prs2mat[#],Greater],OrderedQ[Total/@Transpose[prs2mat[#]],Greater]]&]],{n,6}]
Showing 1-10 of 36 results. Next