A319648 Total number of parts in all plane partitions of n.
0, 1, 5, 14, 38, 85, 196, 401, 830, 1615, 3119, 5802, 10718, 19246, 34276, 59889, 103656, 176801, 299025, 499732, 828638, 1360696, 2218128, 3586194, 5759839, 9184715, 14557974, 22929745, 35916469, 55942850, 86695329, 133671740, 205144324, 313380895, 476667370
Offset: 0
Keywords
Examples
The plane partitions of 2 are [2], [1 1] and [1; 1]. There is a total of a(2) = 5 parts. - _M. F. Hasler_, Sep 27 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
Programs
-
PARI
A319648(n)={vecsum(apply(pp->vecsum(apply(p->#p,pp)),PlanePartitions(n)))} \\ See A091298 for PlanePartitions(). For illustration mainly, becomes slow for n > 15. - M. F. Hasler, Sep 27 2018
-
PARI
M319648=[]; A319648(n,L=0,s)={if(L, n>1||return([1,1]); #L>2||(s=setsearch(M319648,[[n,L],[]],1))>#M319648|| M319648[s][1]!=[n,L]|| return(M319648[s][2]); my(S=[1,n]); for(m=2,n, forpart(P=m, vecmin(L-Vecrev(P,#L))<0&&next; S+=if(m
A319648(n-m,Vecrev(P))*[1,#P;0,1],[1,#P]),L[1],#L)); #L>2|| M319648=setunion(M319648,[[[n,L],S]]); S, my(S=n); n>1&& forpart(P=n,S+=#P); for(m=2,n-1,forpart(P=m,S+=A319648(n-m,Vecrev(P))*[#P,1]~));S)} \\ M. F. Hasler, Sep 30 2018
Formula
a(n) = Sum_{k=1..n} k*A091298(n,k). - M. F. Hasler, Sep 27 2018