cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319648 Total number of parts in all plane partitions of n.

Original entry on oeis.org

0, 1, 5, 14, 38, 85, 196, 401, 830, 1615, 3119, 5802, 10718, 19246, 34276, 59889, 103656, 176801, 299025, 499732, 828638, 1360696, 2218128, 3586194, 5759839, 9184715, 14557974, 22929745, 35916469, 55942850, 86695329, 133671740, 205144324, 313380895, 476667370
Offset: 0

Views

Author

Alois P. Heinz, Sep 25 2018

Keywords

Examples

			The plane partitions of 2 are [2], [1 1] and [1; 1]. There is a total of a(2) = 5 parts. - _M. F. Hasler_, Sep 27 2018
		

Crossrefs

Row sums of A092288.
Cf. A000219.

Programs

  • PARI
    A319648(n)={vecsum(apply(pp->vecsum(apply(p->#p,pp)),PlanePartitions(n)))} \\ See A091298 for PlanePartitions(). For illustration mainly, becomes slow for n > 15. - M. F. Hasler, Sep 27 2018
    
  • PARI
    M319648=[]; A319648(n,L=0,s)={if(L, n>1||return([1,1]); #L>2||(s=setsearch(M319648,[[n,L],[]],1))>#M319648|| M319648[s][1]!=[n,L]|| return(M319648[s][2]); my(S=[1,n]); for(m=2,n, forpart(P=m, vecmin(L-Vecrev(P,#L))<0&&next; S+=if(mA319648(n-m,Vecrev(P))*[1,#P;0,1],[1,#P]),L[1],#L)); #L>2|| M319648=setunion(M319648,[[[n,L],S]]); S, my(S=n); n>1&& forpart(P=n,S+=#P); for(m=2,n-1,forpart(P=m,S+=A319648(n-m,Vecrev(P))*[#P,1]~));S)} \\ M. F. Hasler, Sep 30 2018

Formula

a(n) = Sum_{k=1..n} k*A091298(n,k). - M. F. Hasler, Sep 27 2018