A319661 2-rank of the class group of imaginary quadratic field with discriminant -k, k = A191483(n).
0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2
Offset: 1
Keywords
Links
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
Programs
-
Mathematica
PrimeNu[Select[Range[1000], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&]] - 1 (* Jean-François Alcover, Aug 02 2019, after Andrew Howroyd in A191483 *)
-
PARI
for(n=1, 1000, if(isfundamental(-n) && n%2==0, print1(omega(n) - 1, ", ")))
-
Sage
def A319661_list(len): L = [] for n in range(2, len+1, 2): if is_fundamental_discriminant(-n): L.append(sloane.A001221(n) - 1) return L print(A319661_list(854)) # Peter Luschny, Oct 15 2018
Comments