cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A319684 Sum of A003415(d) over the divisors d of n, where A003415 is arithmetic derivative.

Original entry on oeis.org

0, 1, 1, 5, 1, 7, 1, 17, 7, 9, 1, 27, 1, 11, 10, 49, 1, 34, 1, 37, 12, 15, 1, 83, 11, 17, 34, 47, 1, 54, 1, 129, 16, 21, 14, 114, 1, 23, 18, 117, 1, 68, 1, 67, 55, 27, 1, 227, 15, 64, 22, 77, 1, 142, 18, 151, 24, 33, 1, 190, 1, 35, 69, 321, 20, 96, 1, 97, 28, 90, 1, 326, 1, 41, 75, 107, 20, 110, 1, 325, 142, 45, 1, 244, 24, 47, 34, 219, 1, 243, 22
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Comments

Inverse Möbius transform of A003415.

Crossrefs

Programs

  • Mathematica
    Block[{a}, a[1] = 0; a[n_] := a[n] = If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Array[DivisorSum[#, a[#] &] &, 91]] (* Michael De Vlieger, May 24 2021 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A319684(n) = sumdiv(n,d,A003415(d));

Formula

a(n) = Sum_{d|n} A003415(d).
a(n) = A319683(n) + A003415(n).

A319356 a(n) = Product_{d|n, dA003415(d)), where A003415(d) gives arithmetic derivative of d.

Original entry on oeis.org

1, 2, 2, 6, 2, 18, 2, 66, 6, 18, 2, 2574, 2, 18, 18, 2706, 2, 3978, 2, 3762, 18, 18, 2, 6226506, 6, 18, 102, 5742, 2, 306774, 2, 370722, 18, 18, 18, 203956038, 2, 18, 18, 14961474, 2, 631098, 2, 8514, 7038, 18, 2, 168047170434, 6, 10602, 18, 10494, 2, 33626034, 18, 32252814, 18, 18, 2, 2529917014482, 2, 18, 9486, 155332518, 18, 1418742, 2, 14058, 18, 1219914, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Crossrefs

Cf. A003415, A319357 (rgs-transform).

Programs

  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A319356(n) = { my(m=1); fordiv(n, d, if(dA003415(d)))); (m); };

Formula

a(n) = Product_{d|n, dA000040(1+A003415(d)).
A001221(a(n)) = A319685(n).
A056239(A064989(a(n))) = A319683(n).

A319357 Filter sequence combining A003415(d) from all proper divisors d of n, where A003415(d) = arithmetic derivative of d.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 9, 4, 4, 2, 10, 3, 4, 11, 12, 2, 13, 2, 14, 4, 4, 4, 15, 2, 4, 4, 16, 2, 17, 2, 18, 19, 4, 2, 20, 3, 21, 4, 22, 2, 23, 4, 24, 4, 4, 2, 25, 2, 4, 26, 27, 4, 28, 2, 29, 4, 30, 2, 31, 2, 4, 32, 33, 4, 34, 2, 35, 36, 4, 2, 37, 4, 4, 4, 38, 2, 39, 4, 40, 4, 4, 4, 41, 2, 42, 43, 44, 2, 45, 2, 46, 47
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Comments

Restricted growth sequence transform of A319356.
The only duplicates in range 1..65537 with a(n) > 4 are the following six pairs: a(1445) = a(2783), a(4205) = a(11849), a(5819) = a(8381), a(6727) = a(15523), a(8405) = a(31211) and a(28577) = a(44573). All these have prime signature p^2 * q^1. If all the other duplicates respect the prime signature as well, then also the last implication given below is valid.
For all i, j:
a(i) = a(j) => A000005(i) = A000005(j),
a(i) = a(j) => A319683(i) = A319683(j),
a(i) = a(j) => A319686(i) = A319686(j),
a(i) = a(j) => A101296(i) = A101296(j). [Conjectural, see notes above]

Examples

			Proper divisors of 1445 are [1, 5, 17, 85, 289], while the proper divisors of 2783 are [1, 11, 23, 121, 253]. 1 contributes 0 and primes contribute 1, so only the last two matter in each set. We have A003415(85) = 22 = A003415(121) and A003415(289) = 34 = A003415(253), thus the value of arithmetic derivative coincides for all proper divisors, thus a(1445) = a(2783).
		

Crossrefs

Cf. A000041 (positions of 2's), A001248 (positions of 3's), A006881 (positions of 4's),

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A319356(n) = { my(m=1); fordiv(n, d, if(dA003415(d)))); (m); };
    v319357 = rgs_transform(vector(up_to,n,A319356(n)));
    A319357(n) = v319357[n];

A344584 Difference between the inverse Möbius transform of the arithmetic derivative of n and the sum of the proper divisors of n: a(n) = A319684(n) - A001065(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 10, 3, 1, 0, 11, 0, 1, 1, 34, 0, 13, 0, 15, 1, 1, 0, 47, 5, 1, 21, 19, 0, 12, 0, 98, 1, 1, 1, 59, 0, 1, 1, 67, 0, 14, 0, 27, 22, 1, 0, 151, 7, 21, 1, 31, 0, 76, 1, 87, 1, 1, 0, 82, 0, 1, 28, 258, 1, 18, 0, 39, 1, 16, 0, 203, 0, 1, 26, 43, 1, 20, 0, 219, 102, 1, 0, 104, 1, 1, 1, 127, 0, 99, 1, 51, 1, 1, 1, 423
Offset: 1

Views

Author

Antti Karttunen, May 24 2021

Keywords

Crossrefs

Inverse Möbius transform of A344178.

Programs

  • Mathematica
    Block[{a}, a[1] = 0; a[n_] := a[n] = If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Array[DivisorSum[#, a[#] &] - DivisorSigma[1, #] + # &, 96]] (* Michael De Vlieger, May 24 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A319684(n) = sumdiv(n, d, A003415(d));
    A344584(n) = (A319684(n) - (sigma(n)-n));

Formula

a(n) = A319684(n) - A001065(n) = A211991(n) + A319683(n).
a(n) = Sum_{d|n} A344178(d).
a(n) = n + Sum_{d|n} A168036(d).

A259924 Numbers n such that sigma(n) - n = sum_{k divides n, k < n} k', where sigma(n) is the sum of the divisors of n and k' is the arithmetic derivative of k.

Original entry on oeis.org

1, 780, 1064, 1289560, 1428228, 18107748, 186000889725, 680691912588
Offset: 1

Views

Author

Paolo P. Lava, Jul 09 2015

Keywords

Comments

a(7) > 10^9. - Giovanni Resta, Jul 15 2015
a(9) > 10^13. - Hiroaki Yamanouchi, Sep 10 2015

Examples

			Aliquot parts of 780 are 1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390. Their arithmetic derivatives are 0, 1, 1, 4, 1, 5, 7, 16, 1, 8, 24, 15, 31, 16, 56, 92, 18, 71, 101, 220, 119, 332, 433. Their sum is 1572 and sigma(780) - 780 = 2352 - 780 = 1572.
Aliquot parts of 1064 are 1, 2, 4, 7, 8, 14, 19, 28, 38, 56, 76, 133, 152, 266, 532. Their arithmetic derivatives are 0, 1, 4, 1, 12, 9, 1, 32, 21, 92, 80, 26, 236, 185, 636. Their sum is 1336 and sigma(1064) - 1064 = 2400 - 1064 = 1336.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n,p;
    for n from 3 to q do a:=sort([op(divisors(n))]);
    a:=add(a[k]*add(op(2,p)/op(1,p),p=ifactors(a[k])[2]),k=2..nops(a)-1);
    if sigma(n)-n=a then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Select[Range@ 1500000, DivisorSigma[1, #] - # == Total[f /@ Most@ Divisors@ #] &] (* Michael De Vlieger, Jul 16 2015, after Michael Somos at A003415 *)

Extensions

a(6) from Giovanni Resta, Jul 15 2015
a(1) inserted and a(7)-a(8) added by Hiroaki Yamanouchi, Sep 10 2015
Showing 1-5 of 5 results.