A319686 Number of distinct values obtained when arithmetic derivative (A003415) is applied to the divisors of n.
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 6, 2, 6, 3, 3, 3, 8, 2, 3, 3, 7, 2, 6, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 10, 2, 3, 5, 7, 3, 6, 2, 5, 3, 6, 2, 11, 2, 3, 5, 5, 3, 6, 2, 9, 5, 3, 2, 10, 3, 3, 3, 7, 2, 10, 3, 5, 3, 3, 3, 11, 2, 5, 5, 8, 2, 6, 2, 7, 6, 3, 2, 11, 2, 6, 3, 8, 2, 6, 3, 5, 5, 3, 3, 14
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
d[0] = d[1] = 0; d[n_] := d[n] = n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := CountDistinct[d /@ Divisors[n]]; Array[a, 100] (* Amiram Eldar, Apr 17 2024 *)
-
PARI
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415 A319686(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s=A003415(d)), mapput(m,s,s); k++)); (k); };
-
PARI
a(n) = my(d = divisors(n)); for(i = 1, #d, d[i] = A003415(d[i])); #Set(d) \\ uses A003415 listed at Antti's programs. David A. Corneth, Oct 02 2018
Formula
a(n) = 1+A319685(n).