cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326835 Numbers whose divisors have distinct values of the Euler totient function (A000010).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2019

Keywords

Comments

Since Sum_{d|k} phi(d) = k, these are numbers k such that the set {phi(d) | d|k} is a partition of k into distinct parts.
Includes all the odd prime numbers, since an odd prime p has 2 divisors, 1 and p, whose phi values are 1 and p-1.
If k is a term, then all the divisors of k are also terms. If k is not a term, then all its multiples are not terms. The primitive terms of the complementary sequence are 2, 63, 273, 513, 585, 825, 2107, 2109, 2255, 3069, ....
In particular, all the terms are odd since 2 is not a term (phi(1) = phi(2)).
The number of terms below 10^k for k = 1, 2, ... are 5, 49, 488, 4860, 48598, 485807, 4857394, 48572251, 485716764, 4857144075, ...
Apparently the sequence has an asymptotic density of 0.4857...

Examples

			3 is a term since it has 2 divisors, 1 and 3, and phi(1) = 1 != phi(3) = 2.
15 is a term since the phi values of its divisors, {1, 3, 5, 15}, are distinct: {1, 2, 4, 8}.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local D;
      D:=numtheory:-divisors(n);
      nops(D) = nops(map(numtheory:-phi,D))
    end proc:
    select(filter, [seq(i,i=1..200,2)]); # Robert Israel, Oct 29 2019
  • Mathematica
    aQ[n_] := Length @ Union[EulerPhi /@ (d = Divisors[n])] == Length[d];  Select[Range[130], aQ]
  • PARI
    isok(k) = #Set(apply(x->eulerphi(x), divisors(k))) == numdiv(k); \\ Michel Marcus, Oct 28 2019

Formula

Numbers k such that A319696(k) = A000005(k).
Numbers k such that A319695(k) = A032741(k).
Numbers k such that the k-th row of A102190 has distinct terms.

A319696 Number of distinct values obtained when Euler phi (A000010) is applied to the divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 4, 4, 2, 3, 2, 4, 4, 2, 2, 4, 3, 2, 4, 4, 2, 4, 2, 5, 4, 2, 4, 5, 2, 2, 4, 5, 2, 4, 2, 4, 6, 2, 2, 5, 3, 3, 4, 4, 2, 4, 4, 6, 4, 2, 2, 5, 2, 2, 5, 6, 4, 4, 2, 4, 4, 4, 2, 7, 2, 2, 6, 4, 4, 4, 2, 6, 5, 2, 2, 6, 4, 2, 4, 6, 2, 6, 4, 4, 4, 2, 4, 6, 2, 3, 6, 6, 2, 4, 2, 6, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Examples

			For n = 6, it has four divisors: 1, 2, 3 and 6, and applying A000010 to these gives 1, 1, 2, 2, with just two distinct values, thus a(6) = 2.
		

Crossrefs

Cf. also A184395, A319686.

Programs

  • PARI
    A319696(n) = { my(m=Map(),s,k=0); fordiv(n,d,if(!mapisdefined(m,s=eulerphi(d)), mapput(m,s,s); k++)); (k); };

Formula

a(n) = A319695(n) + [n (mod 4) != 2], where [ ] is the Iverson bracket, resulting 0 when n = 2 mod 4, and 1 otherwise.

A319685 Number of distinct values obtained when arithmetic derivative (A003415) is applied to proper divisors of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 9, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 2, 4, 2, 2, 2, 10, 1, 4, 4, 7, 1, 5, 1, 6, 5, 2, 1, 10, 1, 5, 2, 7, 1, 5, 2, 4, 4, 2, 2, 13
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Comments

Because for all d|n, dA003415(d) < A003415(n), it follows that the terms here are one less than in A319686.
Differs from A033273(n) = A000005(n) - A001221(n) at n = 1, 112, 156, 224, 280, 312, 336, 342, 380, 448, 468, 525, 560, 608, 624, 660, 672, 684, 756, 760, 780, 784, 840, 870, 896, 936, 984, 1008, ...

Examples

			The proper divisors of 112 are [1, 2, 4, 7, 8, 14, 16, 28, 56]. Applying arithmetic derivative A003415 to these, we obtain values [0, 1, 4, 1, 12, 9, 32, 32, 92], of which only 7 are distinct: 0, 1, 4, 9, 12, 32, and 92, thus a(112) = 7.
		

Crossrefs

One less than A319686.
Cf. A003415.
Cf. also A304793, A305611, A316555, A316556, A319695 for similarly constructed sequences.

Programs

  • Mathematica
    d[0] = d[1] = 0; d[n_] := d[n] = n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := CountDistinct[d /@ Most[Divisors[n]]]; Array[a, 100] (* Amiram Eldar, Apr 17 2024 *)
  • PARI
    A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
    A319685(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((dA003415(d)), mapput(m,s,s); k++)); (k); };

Formula

a(n) = A319686(n)-1.

A316556 Number of distinct LCMs of nonempty submultisets of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 3, 4, 1, 2, 1, 2, 3, 2, 3, 3, 1, 2, 1, 2, 1, 3, 3, 2, 2, 2, 1, 4, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 4, 1, 2, 5
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A290103 is applied to all divisors of n larger than one. - Antti Karttunen, Sep 25 2018

Examples

			462 is the Heinz number of (5,4,2,1) which has possible LCMs of nonempty submultisets {1,2,4,5,10,20} so a(462) = 6.
		

Crossrefs

Cf. also A304793, A305611, A319685, A319695 for other similarly constructed sequences.

Programs

  • Mathematica
    Table[Length[Union[LCM@@@Rest[Subsets[If[n==1,{},Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]]]]],{n,100}]
  • PARI
    A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A316556(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s=A290103(d)), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 25 2018

Extensions

More terms from Antti Karttunen, Sep 25 2018

A316555 Number of distinct GCDs of nonempty submultisets of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 3, 2, 3, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 3, 3, 1, 2, 1, 2, 3, 2, 3, 3, 1, 2, 1, 2, 1, 3, 3, 2, 2, 2, 1, 3, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 1, 3, 1, 2, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Number of distinct values obtained when A289508 is applied to all divisors of n larger than one. - Antti Karttunen, Sep 28 2018

Examples

			455 is the Heinz number of (6,4,3) which has possible GCDs of nonempty submultisets {1,2,3,4,6} so a(455) = 5.
		

Crossrefs

Cf. also A304793, A305611, A319685, A319695 for other similarly constructed sequences.

Programs

  • Mathematica
    Table[Length[Union[GCD@@@Rest[Subsets[If[n==1,{},Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]]]]],{n,100}]
  • PARI
    A289508(n) = gcd(apply(p->primepi(p),factor(n)[,1]));
    A316555(n) = { my(m=Map(),s,k=0); fordiv(n,d,if((d>1)&&!mapisdefined(m,s=A289508(d)), mapput(m,s,s); k++)); (k); }; \\ Antti Karttunen, Sep 28 2018

Extensions

More terms from Antti Karttunen, Sep 28 2018
Showing 1-5 of 5 results.