cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319707 Filter sequence which records for primes their residue modulo 6, and for all other numbers assigns a unique number.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 7, 12, 13, 14, 5, 15, 7, 16, 17, 18, 5, 19, 20, 21, 22, 23, 5, 24, 7, 25, 26, 27, 28, 29, 7, 30, 31, 32, 5, 33, 7, 34, 35, 36, 5, 37, 38, 39, 40, 41, 5, 42, 43, 44, 45, 46, 5, 47, 7, 48, 49, 50, 51, 52, 7, 53, 54, 55, 5, 56, 7, 57, 58, 59, 60, 61, 7, 62, 63, 64, 5, 65, 66, 67, 68, 69, 5, 70, 71, 72, 73, 74, 75, 76, 7, 77, 78, 79, 5, 80, 7, 81, 82, 83, 5, 84, 7, 85, 86, 87, 5, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2018

Keywords

Comments

Restricted growth sequence transform of function f defined as f(n) = A010875(n) when n is a prime, otherwise -n.
Primes of the form 6k+5 (A007528) get value 5, and the primes of the form 6k+1 (A002476) get value 7, while for all other n, a(n) is assigned to a unique running count.
For all i, j:
a(i) = a(j) => A010875(i) = A010875(j),
a(i) = a(j) => A305900(i) = A305900(j),
a(i) = a(j) => A319717(i) = A319717(j) => A319716(i) = A319716(j).

Crossrefs

Cf. A007528 (positions of 5's), A002476 (positions of 7's).
Cf. also A319704.
Differs from A319716 for the first time at n=121.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A319707aux(n) = if(isprime(n),(n%6),-n);
    v319707 = rgs_transform(vector(up_to,n,A319707aux(n)));
    A319707(n) = v319707[n];