A319740 The 10-adic integer cube root of one eleventh (1/11), that is, satisfying 11 * x^3 == 1 (mod 10^n), for all n.
1, 3, 1, 7, 6, 1, 8, 5, 7, 9, 7, 9, 3, 0, 1, 6, 1, 0, 5, 4, 5, 9, 3, 9, 9, 0, 3, 1, 3, 8, 6, 5, 2, 1, 9, 3, 3, 2, 8, 3, 4, 4, 6, 3, 5, 0, 0, 9, 7, 2, 8, 2, 5, 7, 3, 4, 8, 5, 9, 3, 0, 9, 2, 9, 1, 2, 1, 8, 5, 8, 7, 3, 3, 0, 5, 7, 4, 6, 4, 2, 5, 0, 3, 5, 5, 9, 4, 7, 1, 3
Offset: 1
Examples
45016103979758167131^3 * 11 == 1 (mod 10^20).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
op([1,3], padic:-rootp(11*x^3-1,10,100)); # Robert Israel, Jan 03 2019
-
PARI
seq(n)={Vecrev(digits(lift(chinese( Mod((1/11 + O(5^n))^(1/3), 5^n), Mod((1/11 + O(2^n))^(1/3), 2^n)))), n)} \\ Andrew Howroyd, Nov 26 2018
Extensions
Terms a(56) and beyond from Andrew Howroyd, Nov 26 2018