cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A225402 10-adic cube root of -1/3.

Original entry on oeis.org

7, 7, 4, 6, 4, 4, 5, 8, 3, 4, 4, 6, 8, 3, 1, 5, 1, 0, 5, 1, 6, 9, 6, 1, 3, 1, 3, 7, 2, 2, 4, 6, 4, 4, 3, 8, 3, 5, 3, 3, 5, 6, 2, 5, 2, 3, 2, 8, 6, 3, 4, 1, 8, 9, 6, 7, 0, 4, 8, 3, 6, 7, 1, 1, 6, 6, 5, 2, 0, 7, 4, 0, 9, 2, 8, 0, 3, 0, 3, 0, 7, 3, 9, 7, 9, 7, 3, 4, 6, 5, 3, 1, 3, 0, 0, 8, 7, 4, 5, 7
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

Previous name was: 10-adic integer x such that x^3 == (10^(n+1)-1)/3 mod 10^(n+1) for n >= 0.
The 10-adic cube root of -1/3, i.e., x such that 3*x^3 = -1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       7^3 == 3      (mod 10).
      77^3 == 33     (mod 10^2).
     477^3 == 333    (mod 10^3).
    6477^3 == 3333   (mod 10^4).
   46477^3 == 33333  (mod 10^5).
  446477^3 == 333333 (mod 10^6).
		

Crossrefs

Cf. A225411, A309600, A319740 (10-adic cube root of 1/11).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 7*n,
          irem(b(n-1)+9*(3*b(n-1)^3+1), 10^n))
        end:
    a:= n-> (b(n+1)-b(n))/10^n:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 15 2022
  • PARI
    n=0;for(i=1,100,m=(10^i-1)/3;for(x=0,9,if(((n+(x*10^(i-1)))^3)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))
    
  • PARI
    upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((-m+O(5^N))^m, 5^N), Mod((-m+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • Ruby
    def A225402(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 9 * (3 * a ** 3 + 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225402(100) # Seiichi Manyama, Aug 12 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019

Extensions

New name (using M. F. Hasler's comment) from Joerg Arndt, Aug 08 2019

A225411 10-adic integer x such that x^3 == (6*(10^(n+1)-1)/9)+1 mod 10^(n+1) for all n.

Original entry on oeis.org

3, 2, 5, 3, 5, 5, 4, 1, 6, 5, 5, 3, 1, 6, 8, 4, 8, 9, 4, 8, 3, 0, 3, 8, 6, 8, 6, 2, 7, 7, 5, 3, 5, 5, 6, 1, 6, 4, 6, 6, 4, 3, 7, 4, 7, 6, 7, 1, 3, 6, 5, 8, 1, 0, 3, 2, 9, 5, 1, 6, 3, 2, 8, 8, 3, 3, 4, 7, 9, 2, 5, 9, 0, 7, 1, 9, 6, 9, 6, 9, 2, 6, 0, 2, 0, 2, 6, 5, 3, 4, 6, 8, 6, 9, 9, 1, 2, 5, 4, 2
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225402.
Equivalently, the 10-adic cube root of 1/3, i.e., solution to 3*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       3^3 ==      7 (mod 10).
      23^3 ==     67 (mod 10^2).
     523^3 ==    667 (mod 10^3).
    3523^3 ==   6667 (mod 10^4).
   53523^3 ==  66667 (mod 10^5).
  553523^3 == 666667 (mod 10^6).
		

Crossrefs

Cf. A225402, A309600, A319740 (10-adic cube root of 1/11).

Programs

  • Maple
    op([1,3],padic:-rootp(3*x^3  -1,  10, 101)); # Robert Israel, Aug 04 2019
  • PARI
    n=0; for(i=1, 100, m=(2*(10^i-1)/3)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    upto(N=100,m=1/3)=Vecrev(digits(lift(chinese(Mod((m+O(5^N))^m, 5^N), Mod((m+O(2^N))^m, 2^N)))),N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • Ruby
    def A225411(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 9 * (3 * a ** 3 - 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225411(100) # Seiichi Manyama, Aug 12 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019

A225412 Digits of the 10-adic integer (1/9)^(1/3).

Original entry on oeis.org

9, 2, 5, 1, 1, 7, 1, 3, 6, 2, 6, 3, 3, 8, 2, 1, 4, 1, 0, 2, 7, 1, 2, 2, 4, 6, 1, 6, 0, 1, 0, 1, 2, 7, 2, 8, 2, 8, 8, 3, 6, 7, 0, 7, 7, 7, 2, 2, 6, 2, 6, 9, 9, 6, 8, 1, 3, 2, 1, 5, 4, 3, 7, 4, 7, 7, 6, 9, 6, 1, 4, 0, 2, 0, 9, 6, 3, 6, 6, 1, 9, 1, 9, 9, 7, 4, 9, 8, 8, 7, 7, 3, 0, 8, 7, 7, 8, 8, 0, 8
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A153042.
Equivalently, the 10-adic cube root of 1/9, i.e., x such that 9*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       9^3 == -1      (mod 10).
      29^3 == -11     (mod 10^2).
     529^3 == -111    (mod 10^3).
    1529^3 == -1111   (mod 10^4).
   11529^3 == -11111  (mod 10^5).
  711529^3 == -111111 (mod 10^6).
		

Crossrefs

Cf. A309600, A319740 (10-adic cube root of 1/11).
Digits of 10-adic integers:
A153042 ((-1/9)^(1/3));
A225406 ( 9^(1/3));
A225409 ( (-9)^(1/3)).

Programs

  • Maple
    op([1,3],padic:-rootp(9*x^3  -1,  10, 101)); # Robert Israel, Aug 04 2019
  • PARI
    n=0; for(i=1, 100, m=(8*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((1/9+O(5^N))^m, 5^N), Mod((1/9+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • PARI
    Vecrev(digits(truncate(-(-1/9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019
    
  • Ruby
    def A225412(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 - 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225412(100) # Seiichi Manyama, Aug 13 2019

Formula

p = ...711529, q = A153042 = ...288471, p + q = 0. - Seiichi Manyama, Aug 04 2019
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

Extensions

Name edited by Seiichi Manyama, Aug 04 2019

A319739 The 10-adic integer cube root of one seventh (1/7), that is, satisfying 7 * x^3 == 1 (mod 10^(n+1)), for all n.

Original entry on oeis.org

7, 0, 4, 4, 5, 9, 6, 1, 6, 0, 8, 3, 5, 2, 7, 3, 4, 7, 0, 3, 7, 5, 4, 2, 9, 9, 0, 9, 3, 8, 0, 6, 1, 7, 4, 8, 5, 8, 1, 5, 8, 9, 7, 5, 5, 2, 1, 4, 9, 3, 7, 5, 6, 1, 5, 7, 9, 7, 5, 2, 6, 6, 5, 2, 8, 0, 0, 6, 4, 6, 0, 2, 9, 5, 5, 3, 6, 2, 2, 8, 2, 3, 6, 4, 4, 0, 3, 6, 1, 2, 9, 0, 9, 8, 2, 1, 8, 8, 1, 9, 8, 5, 1, 9, 4
Offset: 0

Views

Author

Patrick A. Thomas, Sep 26 2018

Keywords

Examples

			25380616954407^3 * 7 == 1 (mod 10^14).
		

Crossrefs

Digits of 10-adic integers:
A225405 ( 7^(1/3));
A225411 ( (1/3)^(1/3));
A225412 ( (1/9)^(1/3));
A225451 ( (1/3)^(1/7));
this sequence ( (1/7)^(1/3));
A319740 ((1/11)^(1/3)).

Programs

  • PARI
    seq(n)={my(v=vector(n), t=0, b=1); for(i=1, #v, for(q=0, 9, if(lift(7*Mod(t, 10*b)^3)==1, v[i]=q; break); t+=b); b*=10); v} \\ Andrew Howroyd, Nov 26 2018
    
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((1/7 + O(5^n))^(1/3), 5^n), Mod((1/7 + O(2^n))^(1/3), 2^n)))), n)} \\ Andrew Howroyd, Nov 26 2018

Extensions

a(55)-a(89) from Andrew Howroyd, Nov 26 2018
a(90)-a(199) from Patrick A. Thomas, Jan 13 2019
Offset changed to 0 by Seiichi Manyama, Aug 17 2019

A306552 Expansion of the 10-adic cube root of -1/7, that is, the 10-adic integer solution to x^3 = -1/7.

Original entry on oeis.org

3, 9, 5, 5, 4, 0, 3, 8, 3, 9, 1, 6, 4, 7, 2, 6, 5, 2, 9, 6, 2, 4, 5, 7, 0, 0, 9, 0, 6, 1, 9, 3, 8, 2, 5, 1, 4, 1, 8, 4, 1, 0, 2, 4, 4, 7, 8, 5, 0, 6, 2, 4, 3, 8, 4, 2, 0, 2, 4, 7, 3, 3, 4, 7, 1, 9, 9, 3, 5, 3, 9, 7, 0, 4, 4, 6, 3, 7, 7, 1, 7, 6, 3, 5, 5, 9, 6
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A319739.

Examples

			3^3 == 7 == -1/7 (mod 10).
93^3 == 57 == -1/7 (mod 100).
593^3 == 857 == -1/7 (mod 1000).
5593^3 == 2857 == -1/7 (mod 10000).
...
...619383045593^3 = ...142857142857 = ...999999999999/7 = -1/7.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: this sequence (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1, 3], padic:-rootp(7*x^3+1, 10, 100)); # Robert Israel, Mar 31 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/7 + O(5^n))^(1/3), 5^n), Mod((-1/7 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A319739(n) for n >= 2.

A306553 Expansion of the 10-adic cube root of -1/11, that is, the 10-adic integer solution to x^3 = -1/11.

Original entry on oeis.org

9, 6, 8, 2, 3, 8, 1, 4, 2, 0, 2, 0, 6, 9, 8, 3, 8, 9, 4, 5, 4, 0, 6, 0, 0, 9, 6, 8, 6, 1, 3, 4, 7, 8, 0, 6, 6, 7, 1, 6, 5, 5, 3, 6, 4, 9, 9, 0, 2, 7, 1, 7, 4, 2, 6, 5, 1, 4, 0, 6, 9, 0, 7, 0, 8, 7, 8, 1, 4, 1, 2, 6, 6, 9, 4, 2, 5, 3, 5, 7, 4, 9, 6, 4, 4, 0, 5
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A319740.

Examples

			9^3 == 9 == -1/11 (mod 10).
69^3 == 9 == -1/11 (mod 100).
869^3 == 909 == -1/11 (mod 1000).
2869^3 == 909 == -1/11 (mod 10000).
...
...020241832869^3 = ...090909090909 = ...999999999999/11 = -1/11.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: this sequence (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(11*x^3+1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/11 + O(5^n))^(1/3), 5^n), Mod((-1/11 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A319740(n) for n >= 2.

A306554 Expansion of the 10-adic cube root of 1/13, that is, the 10-adic integer solution to x^3 = 1/13.

Original entry on oeis.org

3, 5, 6, 4, 1, 9, 3, 2, 8, 7, 4, 0, 8, 3, 6, 5, 7, 7, 0, 9, 8, 2, 7, 5, 1, 4, 8, 0, 9, 5, 1, 6, 0, 6, 2, 1, 3, 2, 2, 6, 4, 2, 7, 0, 6, 8, 6, 1, 3, 3, 2, 2, 0, 0, 1, 5, 6, 7, 9, 6, 2, 7, 8, 4, 2, 6, 3, 6, 3, 0, 1, 0, 4, 5, 5, 6, 6, 1, 3, 5, 4, 3, 3, 3, 1, 7, 0
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A306555.

Examples

			3^3 == 7 == 1/13 (mod 10).
53^3 == 77 == 1/13 (mod 100).
653^3 == 77 == 1/13 (mod 1000).
4653^3 == 3077 == 1/13 (mod 10000).
...
...047823914653^3 = ...923076923077 = 1 + (...999999999999)*(12/13) = 1 - 12/13 = 1/13.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), this sequence (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(13*x^3-1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((1/13 + O(5^n))^(1/3), 5^n), Mod((1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A306555(n) for n >= 2.

A306555 Expansion of the 10-adic cube root of -1/13, that is, the 10-adic integer solution to x^3 = -1/13.

Original entry on oeis.org

7, 4, 3, 5, 8, 0, 6, 7, 1, 2, 5, 9, 1, 6, 3, 4, 2, 2, 9, 0, 1, 7, 2, 4, 8, 5, 1, 9, 0, 4, 8, 3, 9, 3, 7, 8, 6, 7, 7, 3, 5, 7, 2, 9, 3, 1, 3, 8, 6, 6, 7, 7, 9, 9, 8, 4, 3, 2, 0, 3, 7, 2, 1, 5, 7, 3, 6, 3, 6, 9, 8, 9, 5, 4, 4, 3, 3, 8, 6, 4, 5, 6, 6, 6, 8, 2, 9
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A306554.

Examples

			7^3 == 3 == -1/13 (mod 10).
47^3 == 23 == -1/13 (mod 100).
347^3 == 923 == -1/13 (mod 1000).
5347^3 == 6923 == -1/13 (mod 10000).
...
...952176085347^3 = ...076923076923 = ...999999999999/13 = -1/13.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: this sequence (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(13*x^3+1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/13 + O(5^n))^(1/3), 5^n), Mod((-1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A306554(n) for n >= 2.
Showing 1-8 of 8 results.