cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A309600 Digits of the 10-adic integer (17/9)^(1/3).

Original entry on oeis.org

7, 1, 6, 8, 7, 0, 3, 3, 3, 6, 5, 2, 7, 8, 7, 2, 6, 7, 1, 1, 0, 3, 3, 2, 4, 5, 6, 5, 3, 6, 5, 3, 3, 3, 7, 5, 2, 4, 7, 5, 0, 2, 9, 0, 6, 7, 0, 8, 8, 6, 6, 7, 0, 1, 2, 4, 5, 3, 2, 8, 6, 9, 7, 3, 1, 6, 6, 9, 5, 0, 1, 6, 4, 6, 8, 0, 3, 8, 5, 9, 6, 1, 3, 5, 3, 7, 9, 7, 2, 3, 6, 6, 9, 0, 0, 0, 5, 3, 7, 7, 2
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2019

Keywords

Examples

			      7^3 == 3      (mod 10).
     17^3 == 13     (mod 10^2).
    617^3 == 113    (mod 10^3).
   8617^3 == 1113   (mod 10^4).
  78617^3 == 11113  (mod 10^5).
  78617^3 == 111113 (mod 10^6).
		

Crossrefs

10-adic integer x.
A225404 (x^3 = ...000003).
A225405 (x^3 = ...000007).
A225406 (x^3 = ...000009).
A153042 (x^3 = ...111111).
this sequence (x^3 = ...111113).
A309601 (x^3 = ...111117).
A309602 (x^3 = ...111119).
A309603 (x^3 = ...222221).
A225410 (x^3 = ...222223).
A309604 (x^3 = ...222227).
A309605 (x^3 = ...222229).
A309606 (x^3 = ...333331).
A225402 (x^3 = ...333333).
A309569 (x^3 = ...333337).
A309570 (x^3 = ...333339).
A309595 (x^3 = ...444441).
A309608 (x^3 = ...444443).
A309609 (x^3 = ...444447).
A309610 (x^3 = ...444449).
A309611 (x^3 = ...555551).
A309612 (x^3 = ...555553).
A309613 (x^3 = ...555557).
A309614 (x^3 = ...555559).
A309640 (x^3 = ...666661).
A309641 (x^3 = ...666663).
A225411 (x^3 = ...666667).
A309642 (x^3 = ...666669).
A309643 (x^3 = ...777771).
A309644 (x^3 = ...777773).
A225401 (x^3 = ...777777).
A309645 (x^3 = ...777779).
A309646 (x^3 = ...888881).
A309647 (x^3 = ...888883).
A309648 (x^3 = ...888887).
A225412 (x^3 = ...888889).
A225409 (x^3 = ...999991).
A225408 (x^3 = ...999993).
A225407 (x^3 = ...999997).

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((17/9+O(2^N))^(1/3), 2^N), Mod((17/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309600(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 17)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309600(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 17) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A225402 10-adic cube root of -1/3.

Original entry on oeis.org

7, 7, 4, 6, 4, 4, 5, 8, 3, 4, 4, 6, 8, 3, 1, 5, 1, 0, 5, 1, 6, 9, 6, 1, 3, 1, 3, 7, 2, 2, 4, 6, 4, 4, 3, 8, 3, 5, 3, 3, 5, 6, 2, 5, 2, 3, 2, 8, 6, 3, 4, 1, 8, 9, 6, 7, 0, 4, 8, 3, 6, 7, 1, 1, 6, 6, 5, 2, 0, 7, 4, 0, 9, 2, 8, 0, 3, 0, 3, 0, 7, 3, 9, 7, 9, 7, 3, 4, 6, 5, 3, 1, 3, 0, 0, 8, 7, 4, 5, 7
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

Previous name was: 10-adic integer x such that x^3 == (10^(n+1)-1)/3 mod 10^(n+1) for n >= 0.
The 10-adic cube root of -1/3, i.e., x such that 3*x^3 = -1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       7^3 == 3      (mod 10).
      77^3 == 33     (mod 10^2).
     477^3 == 333    (mod 10^3).
    6477^3 == 3333   (mod 10^4).
   46477^3 == 33333  (mod 10^5).
  446477^3 == 333333 (mod 10^6).
		

Crossrefs

Cf. A225411, A309600, A319740 (10-adic cube root of 1/11).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 7*n,
          irem(b(n-1)+9*(3*b(n-1)^3+1), 10^n))
        end:
    a:= n-> (b(n+1)-b(n))/10^n:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 15 2022
  • PARI
    n=0;for(i=1,100,m=(10^i-1)/3;for(x=0,9,if(((n+(x*10^(i-1)))^3)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))
    
  • PARI
    upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((-m+O(5^N))^m, 5^N), Mod((-m+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • Ruby
    def A225402(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 9 * (3 * a ** 3 + 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225402(100) # Seiichi Manyama, Aug 12 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019

Extensions

New name (using M. F. Hasler's comment) from Joerg Arndt, Aug 08 2019

A319740 The 10-adic integer cube root of one eleventh (1/11), that is, satisfying 11 * x^3 == 1 (mod 10^n), for all n.

Original entry on oeis.org

1, 3, 1, 7, 6, 1, 8, 5, 7, 9, 7, 9, 3, 0, 1, 6, 1, 0, 5, 4, 5, 9, 3, 9, 9, 0, 3, 1, 3, 8, 6, 5, 2, 1, 9, 3, 3, 2, 8, 3, 4, 4, 6, 3, 5, 0, 0, 9, 7, 2, 8, 2, 5, 7, 3, 4, 8, 5, 9, 3, 0, 9, 2, 9, 1, 2, 1, 8, 5, 8, 7, 3, 3, 0, 5, 7, 4, 6, 4, 2, 5, 0, 3, 5, 5, 9, 4, 7, 1, 3
Offset: 1

Views

Author

Patrick A. Thomas, Sep 26 2018

Keywords

Examples

			45016103979758167131^3 * 11 == 1 (mod 10^20).
		

Crossrefs

Cf. A225402, A225411, A225412 (10-adic cube root of -1/3, 1/3, 1/9).

Programs

  • Maple
    op([1,3], padic:-rootp(11*x^3-1,10,100)); # Robert Israel, Jan 03 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((1/11 + O(5^n))^(1/3), 5^n), Mod((1/11 + O(2^n))^(1/3), 2^n)))), n)} \\ Andrew Howroyd, Nov 26 2018

Extensions

Terms a(56) and beyond from Andrew Howroyd, Nov 26 2018

A319739 The 10-adic integer cube root of one seventh (1/7), that is, satisfying 7 * x^3 == 1 (mod 10^(n+1)), for all n.

Original entry on oeis.org

7, 0, 4, 4, 5, 9, 6, 1, 6, 0, 8, 3, 5, 2, 7, 3, 4, 7, 0, 3, 7, 5, 4, 2, 9, 9, 0, 9, 3, 8, 0, 6, 1, 7, 4, 8, 5, 8, 1, 5, 8, 9, 7, 5, 5, 2, 1, 4, 9, 3, 7, 5, 6, 1, 5, 7, 9, 7, 5, 2, 6, 6, 5, 2, 8, 0, 0, 6, 4, 6, 0, 2, 9, 5, 5, 3, 6, 2, 2, 8, 2, 3, 6, 4, 4, 0, 3, 6, 1, 2, 9, 0, 9, 8, 2, 1, 8, 8, 1, 9, 8, 5, 1, 9, 4
Offset: 0

Views

Author

Patrick A. Thomas, Sep 26 2018

Keywords

Examples

			25380616954407^3 * 7 == 1 (mod 10^14).
		

Crossrefs

Digits of 10-adic integers:
A225405 ( 7^(1/3));
A225411 ( (1/3)^(1/3));
A225412 ( (1/9)^(1/3));
A225451 ( (1/3)^(1/7));
this sequence ( (1/7)^(1/3));
A319740 ((1/11)^(1/3)).

Programs

  • PARI
    seq(n)={my(v=vector(n), t=0, b=1); for(i=1, #v, for(q=0, 9, if(lift(7*Mod(t, 10*b)^3)==1, v[i]=q; break); t+=b); b*=10); v} \\ Andrew Howroyd, Nov 26 2018
    
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((1/7 + O(5^n))^(1/3), 5^n), Mod((1/7 + O(2^n))^(1/3), 2^n)))), n)} \\ Andrew Howroyd, Nov 26 2018

Extensions

a(55)-a(89) from Andrew Howroyd, Nov 26 2018
a(90)-a(199) from Patrick A. Thomas, Jan 13 2019
Offset changed to 0 by Seiichi Manyama, Aug 17 2019

A306552 Expansion of the 10-adic cube root of -1/7, that is, the 10-adic integer solution to x^3 = -1/7.

Original entry on oeis.org

3, 9, 5, 5, 4, 0, 3, 8, 3, 9, 1, 6, 4, 7, 2, 6, 5, 2, 9, 6, 2, 4, 5, 7, 0, 0, 9, 0, 6, 1, 9, 3, 8, 2, 5, 1, 4, 1, 8, 4, 1, 0, 2, 4, 4, 7, 8, 5, 0, 6, 2, 4, 3, 8, 4, 2, 0, 2, 4, 7, 3, 3, 4, 7, 1, 9, 9, 3, 5, 3, 9, 7, 0, 4, 4, 6, 3, 7, 7, 1, 7, 6, 3, 5, 5, 9, 6
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A319739.

Examples

			3^3 == 7 == -1/7 (mod 10).
93^3 == 57 == -1/7 (mod 100).
593^3 == 857 == -1/7 (mod 1000).
5593^3 == 2857 == -1/7 (mod 10000).
...
...619383045593^3 = ...142857142857 = ...999999999999/7 = -1/7.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: this sequence (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1, 3], padic:-rootp(7*x^3+1, 10, 100)); # Robert Israel, Mar 31 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/7 + O(5^n))^(1/3), 5^n), Mod((-1/7 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A319739(n) for n >= 2.

A306553 Expansion of the 10-adic cube root of -1/11, that is, the 10-adic integer solution to x^3 = -1/11.

Original entry on oeis.org

9, 6, 8, 2, 3, 8, 1, 4, 2, 0, 2, 0, 6, 9, 8, 3, 8, 9, 4, 5, 4, 0, 6, 0, 0, 9, 6, 8, 6, 1, 3, 4, 7, 8, 0, 6, 6, 7, 1, 6, 5, 5, 3, 6, 4, 9, 9, 0, 2, 7, 1, 7, 4, 2, 6, 5, 1, 4, 0, 6, 9, 0, 7, 0, 8, 7, 8, 1, 4, 1, 2, 6, 6, 9, 4, 2, 5, 3, 5, 7, 4, 9, 6, 4, 4, 0, 5
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A319740.

Examples

			9^3 == 9 == -1/11 (mod 10).
69^3 == 9 == -1/11 (mod 100).
869^3 == 909 == -1/11 (mod 1000).
2869^3 == 909 == -1/11 (mod 10000).
...
...020241832869^3 = ...090909090909 = ...999999999999/11 = -1/11.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: this sequence (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(11*x^3+1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/11 + O(5^n))^(1/3), 5^n), Mod((-1/11 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A319740(n) for n >= 2.

A306554 Expansion of the 10-adic cube root of 1/13, that is, the 10-adic integer solution to x^3 = 1/13.

Original entry on oeis.org

3, 5, 6, 4, 1, 9, 3, 2, 8, 7, 4, 0, 8, 3, 6, 5, 7, 7, 0, 9, 8, 2, 7, 5, 1, 4, 8, 0, 9, 5, 1, 6, 0, 6, 2, 1, 3, 2, 2, 6, 4, 2, 7, 0, 6, 8, 6, 1, 3, 3, 2, 2, 0, 0, 1, 5, 6, 7, 9, 6, 2, 7, 8, 4, 2, 6, 3, 6, 3, 0, 1, 0, 4, 5, 5, 6, 6, 1, 3, 5, 4, 3, 3, 3, 1, 7, 0
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A306555.

Examples

			3^3 == 7 == 1/13 (mod 10).
53^3 == 77 == 1/13 (mod 100).
653^3 == 77 == 1/13 (mod 1000).
4653^3 == 3077 == 1/13 (mod 10000).
...
...047823914653^3 = ...923076923077 = 1 + (...999999999999)*(12/13) = 1 - 12/13 = 1/13.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), this sequence (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(13*x^3-1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((1/13 + O(5^n))^(1/3), 5^n), Mod((1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A306555(n) for n >= 2.

A306555 Expansion of the 10-adic cube root of -1/13, that is, the 10-adic integer solution to x^3 = -1/13.

Original entry on oeis.org

7, 4, 3, 5, 8, 0, 6, 7, 1, 2, 5, 9, 1, 6, 3, 4, 2, 2, 9, 0, 1, 7, 2, 4, 8, 5, 1, 9, 0, 4, 8, 3, 9, 3, 7, 8, 6, 7, 7, 3, 5, 7, 2, 9, 3, 1, 3, 8, 6, 6, 7, 7, 9, 9, 8, 4, 3, 2, 0, 3, 7, 2, 1, 5, 7, 3, 6, 3, 6, 9, 8, 9, 5, 4, 4, 3, 3, 8, 6, 4, 5, 6, 6, 6, 8, 2, 9
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A306554.

Examples

			7^3 == 3 == -1/13 (mod 10).
47^3 == 23 == -1/13 (mod 100).
347^3 == 923 == -1/13 (mod 1000).
5347^3 == 6923 == -1/13 (mod 10000).
...
...952176085347^3 = ...076923076923 = ...999999999999/13 = -1/13.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: this sequence (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(13*x^3+1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/13 + O(5^n))^(1/3), 5^n), Mod((-1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A306554(n) for n >= 2.

A309722 Digits of the 4-adic integer (1/3)^(1/3).

Original entry on oeis.org

3, 0, 3, 2, 1, 1, 0, 1, 2, 2, 2, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 3, 2, 2, 3, 2, 3, 3, 1, 1, 2, 0, 1, 3, 0, 0, 2, 3, 2, 2, 2, 0, 0, 0, 0, 0, 3, 2, 0, 2, 0, 2, 0, 0, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 0, 2, 3, 1, 0, 0, 3, 3, 2, 3, 3, 3, 0, 3, 1, 3, 2, 3, 2, 2, 1, 2, 0, 3, 2, 0, 2, 3, 0, 0, 2, 0, 3, 3, 0
Offset: 0

Views

Author

Seiichi Manyama, Aug 14 2019

Keywords

Crossrefs

Digits of the k-adic integer (1/(k-1))^(1/(k-1)): this sequence (k=4), A309723 (k=6), A309724 (k=8), A225464 (k=10).

Programs

  • PARI
    N=100; Vecrev(digits(lift((1/3+O(2^(2*N)))^(1/3)), 4), N)
    
  • Ruby
    def A309722(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 3 * (3 * a ** 3 - 1)) % (4 ** (i + 2))
        ary << (b - a) / (4 ** (i + 1))
        a = b
      }
      ary
    end
    p A309722(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (3 * b(n-1)^3 - 1) mod 4^n for n > 1, then a(n) = (b(n+1) - b(n))/4^n.
Showing 1-9 of 9 results.