cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A225402 10-adic cube root of -1/3.

Original entry on oeis.org

7, 7, 4, 6, 4, 4, 5, 8, 3, 4, 4, 6, 8, 3, 1, 5, 1, 0, 5, 1, 6, 9, 6, 1, 3, 1, 3, 7, 2, 2, 4, 6, 4, 4, 3, 8, 3, 5, 3, 3, 5, 6, 2, 5, 2, 3, 2, 8, 6, 3, 4, 1, 8, 9, 6, 7, 0, 4, 8, 3, 6, 7, 1, 1, 6, 6, 5, 2, 0, 7, 4, 0, 9, 2, 8, 0, 3, 0, 3, 0, 7, 3, 9, 7, 9, 7, 3, 4, 6, 5, 3, 1, 3, 0, 0, 8, 7, 4, 5, 7
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

Previous name was: 10-adic integer x such that x^3 == (10^(n+1)-1)/3 mod 10^(n+1) for n >= 0.
The 10-adic cube root of -1/3, i.e., x such that 3*x^3 = -1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       7^3 == 3      (mod 10).
      77^3 == 33     (mod 10^2).
     477^3 == 333    (mod 10^3).
    6477^3 == 3333   (mod 10^4).
   46477^3 == 33333  (mod 10^5).
  446477^3 == 333333 (mod 10^6).
		

Crossrefs

Cf. A225411, A309600, A319740 (10-adic cube root of 1/11).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 7*n,
          irem(b(n-1)+9*(3*b(n-1)^3+1), 10^n))
        end:
    a:= n-> (b(n+1)-b(n))/10^n:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 15 2022
  • PARI
    n=0;for(i=1,100,m=(10^i-1)/3;for(x=0,9,if(((n+(x*10^(i-1)))^3)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))
    
  • PARI
    upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((-m+O(5^N))^m, 5^N), Mod((-m+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • Ruby
    def A225402(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 9 * (3 * a ** 3 + 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225402(100) # Seiichi Manyama, Aug 12 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019

Extensions

New name (using M. F. Hasler's comment) from Joerg Arndt, Aug 08 2019

A225411 10-adic integer x such that x^3 == (6*(10^(n+1)-1)/9)+1 mod 10^(n+1) for all n.

Original entry on oeis.org

3, 2, 5, 3, 5, 5, 4, 1, 6, 5, 5, 3, 1, 6, 8, 4, 8, 9, 4, 8, 3, 0, 3, 8, 6, 8, 6, 2, 7, 7, 5, 3, 5, 5, 6, 1, 6, 4, 6, 6, 4, 3, 7, 4, 7, 6, 7, 1, 3, 6, 5, 8, 1, 0, 3, 2, 9, 5, 1, 6, 3, 2, 8, 8, 3, 3, 4, 7, 9, 2, 5, 9, 0, 7, 1, 9, 6, 9, 6, 9, 2, 6, 0, 2, 0, 2, 6, 5, 3, 4, 6, 8, 6, 9, 9, 1, 2, 5, 4, 2
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225402.
Equivalently, the 10-adic cube root of 1/3, i.e., solution to 3*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       3^3 ==      7 (mod 10).
      23^3 ==     67 (mod 10^2).
     523^3 ==    667 (mod 10^3).
    3523^3 ==   6667 (mod 10^4).
   53523^3 ==  66667 (mod 10^5).
  553523^3 == 666667 (mod 10^6).
		

Crossrefs

Cf. A225402, A309600, A319740 (10-adic cube root of 1/11).

Programs

  • Maple
    op([1,3],padic:-rootp(3*x^3  -1,  10, 101)); # Robert Israel, Aug 04 2019
  • PARI
    n=0; for(i=1, 100, m=(2*(10^i-1)/3)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    upto(N=100,m=1/3)=Vecrev(digits(lift(chinese(Mod((m+O(5^N))^m, 5^N), Mod((m+O(2^N))^m, 2^N)))),N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • Ruby
    def A225411(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 9 * (3 * a ** 3 - 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225411(100) # Seiichi Manyama, Aug 12 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 12 2019

A225412 Digits of the 10-adic integer (1/9)^(1/3).

Original entry on oeis.org

9, 2, 5, 1, 1, 7, 1, 3, 6, 2, 6, 3, 3, 8, 2, 1, 4, 1, 0, 2, 7, 1, 2, 2, 4, 6, 1, 6, 0, 1, 0, 1, 2, 7, 2, 8, 2, 8, 8, 3, 6, 7, 0, 7, 7, 7, 2, 2, 6, 2, 6, 9, 9, 6, 8, 1, 3, 2, 1, 5, 4, 3, 7, 4, 7, 7, 6, 9, 6, 1, 4, 0, 2, 0, 9, 6, 3, 6, 6, 1, 9, 1, 9, 9, 7, 4, 9, 8, 8, 7, 7, 3, 0, 8, 7, 7, 8, 8, 0, 8
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A153042.
Equivalently, the 10-adic cube root of 1/9, i.e., x such that 9*x^3 = 1 (mod 10^n) for all n. - M. F. Hasler, Jan 02 2019

Examples

			       9^3 == -1      (mod 10).
      29^3 == -11     (mod 10^2).
     529^3 == -111    (mod 10^3).
    1529^3 == -1111   (mod 10^4).
   11529^3 == -11111  (mod 10^5).
  711529^3 == -111111 (mod 10^6).
		

Crossrefs

Cf. A309600, A319740 (10-adic cube root of 1/11).
Digits of 10-adic integers:
A153042 ((-1/9)^(1/3));
A225406 ( 9^(1/3));
A225409 ( (-9)^(1/3)).

Programs

  • Maple
    op([1,3],padic:-rootp(9*x^3  -1,  10, 101)); # Robert Israel, Aug 04 2019
  • PARI
    n=0; for(i=1, 100, m=(8*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    upto(N=100, m=1/3)=Vecrev(digits(lift(chinese(Mod((1/9+O(5^N))^m, 5^N), Mod((1/9+O(2^N))^m, 2^N)))), N) \\ Following Andrew Howroyd's code for A319740. - M. F. Hasler, Jan 02 2019
    
  • PARI
    Vecrev(digits(truncate(-(-1/9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019
    
  • Ruby
    def A225412(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + 7 * (9 * a ** 3 - 1)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225412(100) # Seiichi Manyama, Aug 13 2019

Formula

p = ...711529, q = A153042 = ...288471, p + q = 0. - Seiichi Manyama, Aug 04 2019
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 1) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

Extensions

Name edited by Seiichi Manyama, Aug 04 2019

A225401 10-adic integer x such that x^3 = -7/9.

Original entry on oeis.org

3, 5, 7, 0, 6, 6, 9, 9, 8, 3, 3, 2, 7, 9, 4, 1, 3, 6, 9, 5, 5, 3, 9, 0, 2, 8, 0, 5, 7, 3, 1, 2, 0, 3, 1, 9, 4, 2, 8, 9, 3, 3, 0, 1, 3, 5, 0, 9, 0, 1, 4, 0, 9, 4, 0, 3, 4, 7, 8, 4, 6, 5, 3, 2, 7, 5, 5, 8, 3, 6, 7, 3, 8, 5, 8, 9, 7, 2, 9, 9, 4, 5, 8, 2, 0, 3, 5, 8, 6, 7, 8, 9, 5, 3, 8, 4, 3, 8, 4, 7
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Examples

			       3^3 == 7      (mod 10).
      53^3 == 77     (mod 10^2).
     753^3 == 777    (mod 10^3).
     753^3 == 7777   (mod 10^4).
   60753^3 == 77777  (mod 10^5).
  660753^3 == 777777 (mod 10^6).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 3*n,
          irem(b(n-1)+3*(9*b(n-1)^3+7), 10^n))
        end:
    a:= n-> (b(n+1)-b(n))/10^n:
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 14 2022
  • PARI
    n=0;for(i=1,100,m=7*(10^i-1)/9;for(x=0,9,if(((n+(x*10^(i-1)))^3)%(10^i)==m,n=n+(x*10^(i-1));print1(x", ");break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-7/9+O(2^N))^(1/3), 2^N), Mod((-7/9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 05 2019
    
  • Ruby
    def A225401(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 + 7)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225401(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 7) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

A225405 10-adic integer x such that x^3 = 7.

Original entry on oeis.org

3, 4, 5, 1, 5, 0, 7, 1, 2, 2, 2, 4, 4, 2, 9, 6, 0, 7, 3, 5, 4, 5, 8, 8, 8, 0, 4, 1, 8, 5, 1, 4, 0, 0, 6, 1, 3, 5, 4, 4, 8, 1, 3, 7, 4, 0, 7, 4, 8, 5, 5, 1, 6, 7, 4, 5, 5, 0, 0, 4, 9, 0, 4, 7, 0, 8, 6, 8, 4, 7, 4, 4, 2, 2, 0, 3, 2, 2, 0, 1, 6, 5, 5, 4, 3, 0, 3, 4, 9, 7, 1, 5, 1, 2, 3, 0, 2, 5, 6, 8
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Examples

			      3^3 == 7 (mod 10).
     43^3 == 7 (mod 10^2).
    543^3 == 7 (mod 10^3).
   1543^3 == 7 (mod 10^4).
  51543^3 == 7 (mod 10^5).
  51543^3 == 7 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    n=0; for(i=1, 100, m=7; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((7+O(2^N))^(1/3), 2^N), Mod((7+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 05 2019
    
  • Ruby
    def A225405(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 7 * (a ** 3 - 7)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225405(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 7 * (b(n-1)^3 - 7) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

A225406 Digits of the 10-adic integer 9^(1/3).

Original entry on oeis.org

9, 6, 5, 0, 6, 6, 3, 4, 8, 6, 6, 0, 4, 8, 5, 4, 5, 9, 4, 5, 1, 1, 9, 4, 0, 6, 0, 8, 1, 3, 7, 0, 6, 6, 9, 4, 8, 3, 9, 9, 3, 0, 2, 4, 2, 0, 3, 5, 9, 8, 6, 5, 5, 0, 9, 6, 7, 7, 4, 8, 0, 7, 4, 6, 1, 0, 3, 2, 9, 8, 5, 8, 2, 1, 5, 7, 0, 9, 0, 9, 8, 8, 1, 6, 0, 6, 8, 6, 0, 3, 9, 5, 0, 9, 9, 5, 6, 5, 3, 7
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Examples

			       9^3 == 9 (mod 10).
      69^3 == 9 (mod 10^2).
     569^3 == 9 (mod 10^3).
     569^3 == 9 (mod 10^4).
   60569^3 == 9 (mod 10^5).
  660569^3 == 9 (mod 10^6).
		

Crossrefs

Cf. A309600.
Digits of 10-adic integers:
A153042 ((-1/9)^(1/3));
A225409 ( (-9)^(1/3));
A225412 ( (1/9)^(1/3)).

Programs

  • Maple
    op([1,3],padic:-rootp((x)^3  -9,  10, 101)); # Robert Israel, Aug 04 2019
  • PARI
    n=0; for(i=1, 100, m=9; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    Vecrev(digits(truncate(-(-9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((9+O(2^N))^(1/3), 2^N), Mod((9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 04 2019
    
  • Ruby
    def A225406(n)
      ary = [9]
      a = 9
      n.times{|i|
        b = (a + 3 * (a ** 3 - 9)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225406(100) # Seiichi Manyama, Aug 13 2019

Formula

p = ...660569, q = A225409 = ...339431, p + q = 0. - Seiichi Manyama, Aug 04 2019
Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 3 * (b(n-1)^3 - 9) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

A225408 10-adic integer x=.....8457 satisfying x^3 = -7.

Original entry on oeis.org

7, 5, 4, 8, 4, 9, 2, 8, 7, 7, 7, 5, 5, 7, 0, 3, 9, 2, 6, 4, 5, 4, 1, 1, 1, 9, 5, 8, 1, 4, 8, 5, 9, 9, 3, 8, 6, 4, 5, 5, 1, 8, 6, 2, 5, 9, 2, 5, 1, 4, 4, 8, 3, 2, 5, 4, 4, 9, 9, 5, 0, 9, 5, 2, 9, 1, 3, 1, 5, 2, 5, 5, 7, 7, 9, 6, 7, 7, 9, 8, 3, 4, 4, 5, 6, 9, 6, 5, 0, 2, 8, 4, 8, 7, 6, 9, 7, 4, 3, 1
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225405.

Examples

			       7^3 == -7 (mod 10).
      57^3 == -7 (mod 10^2).
     457^3 == -7 (mod 10^3).
    8457^3 == -7 (mod 10^4).
   48457^3 == -7 (mod 10^5).
  948457^3 == -7 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    n=0; for(i=1, 100, m=(10^i-7); for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-7+O(2^N))^(1/3), 2^N), Mod((-7+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 04 2019
    
  • Ruby
    def A225408(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 7 * (a ** 3 + 7)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225408(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 7 * (b(n-1)^3 + 7) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

A225409 Digits of the 10-adic integers (-9)^(1/3).

Original entry on oeis.org

1, 3, 4, 9, 3, 3, 6, 5, 1, 3, 3, 9, 5, 1, 4, 5, 4, 0, 5, 4, 8, 8, 0, 5, 9, 3, 9, 1, 8, 6, 2, 9, 3, 3, 0, 5, 1, 6, 0, 0, 6, 9, 7, 5, 7, 9, 6, 4, 0, 1, 3, 4, 4, 9, 0, 3, 2, 2, 5, 1, 9, 2, 5, 3, 8, 9, 6, 7, 0, 1, 4, 1, 7, 8, 4, 2, 9, 0, 9, 0, 1, 1, 8, 3, 9, 3, 1, 3, 9, 6, 0, 4, 9, 0, 0, 4, 3, 4, 6, 2
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225406.

Examples

			       1^3 == -9 (mod 10).
      31^3 == -9 (mod 10^2).
     431^3 == -9 (mod 10^3).
    9431^3 == -9 (mod 10^4).
   39431^3 == -9 (mod 10^5).
  339431^3 == -9 (mod 10^6).
		

Crossrefs

Cf. A309600,
Digits of 10-adic integers:
A153042 ((-1/9)^(1/3));
A225406 ( 9^(1/3));
A225412 ( (1/9)^(1/3)).

Programs

  • PARI
    n=0; for(i=1, 100, m=(10^i-9); for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    Vecrev(digits(truncate((-9+O(10^100))^(1/3)))) \\ Seiichi Manyama, Aug 04 2019
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-9+O(2^N))^(1/3), 2^N), Mod((-9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 04 2019
    
  • Ruby
    def A225409(n)
      ary = [1]
      a = 1
      n.times{|i|
        b = (a + 3 * (a ** 3 + 9)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225409(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 3 * (b(n-1)^3 + 9) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

A225410 10-adic integer x such that x^3 = 7/9.

Original entry on oeis.org

7, 4, 2, 9, 3, 3, 0, 0, 1, 6, 6, 7, 2, 0, 5, 8, 6, 3, 0, 4, 4, 6, 0, 9, 7, 1, 9, 4, 2, 6, 8, 7, 9, 6, 8, 0, 5, 7, 1, 0, 6, 6, 9, 8, 6, 4, 9, 0, 9, 8, 5, 9, 0, 5, 9, 6, 5, 2, 1, 5, 3, 4, 6, 7, 2, 4, 4, 1, 6, 3, 2, 6, 1, 4, 1, 0, 2, 7, 0, 0, 5, 4, 1, 7, 9, 6, 4, 1, 3, 2, 1, 0, 4, 6, 1, 5, 6, 1, 5, 2
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225401.

Examples

			       7^3 == 3      (mod 10).
      47^3 == 23     (mod 10^2).
     247^3 == 223    (mod 10^3).
    9247^3 == 2223   (mod 10^4).
   39247^3 == 22223  (mod 10^5).
  339247^3 == 222223 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    n=0; for(i=1, 100, m=(2*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((7/9+O(2^N))^(1/3), 2^N), Mod((7/9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 05 2019
    
  • Ruby
    def A225410(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 7)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225410(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 7) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

A225407 10-adic integer x such that x^3 = -3.

Original entry on oeis.org

3, 1, 4, 5, 6, 8, 4, 0, 1, 2, 1, 9, 9, 4, 1, 6, 7, 5, 9, 3, 8, 4, 3, 3, 7, 0, 5, 1, 8, 6, 9, 6, 3, 8, 1, 5, 1, 5, 3, 8, 0, 7, 7, 8, 6, 6, 1, 3, 1, 2, 1, 1, 0, 9, 3, 4, 0, 3, 6, 4, 6, 9, 7, 5, 7, 6, 9, 0, 9, 4, 7, 8, 3, 9, 2, 9, 8, 0, 0, 5, 2, 4, 2, 0, 6, 5, 1, 3, 3, 6, 6, 8, 8, 5, 6, 6, 3, 3, 7, 5
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225404.

Examples

			       3^3 == -7 (mod 10).
      13^3 == -7 (mod 10^2).
     413^3 == -7 (mod 10^3).
    5413^3 == -7 (mod 10^4).
   65413^3 == -7 (mod 10^5).
  865413^3 == -7 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    n=0; for(i=1, 100, m=(10^i-3); for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((-3+O(2^N))^(1/3), 2^N), Mod((-3+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 06 2019
    
  • Ruby
    def A225407(n)
      ary = [3]
      a = 3
      n.times{|i|
        b = (a + 7 * (a ** 3 + 3)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225407(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 7 * (b(n-1)^3 + 3) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019
Showing 1-10 of 35 results. Next