cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A353003 Indices k where A225401(k) = 0.

Original entry on oeis.org

3, 23, 26, 32, 42, 46, 48, 51, 54, 84, 100, 101, 119, 123, 136, 184, 185, 202, 206, 216, 241, 263, 265, 272, 273, 284, 293, 323, 325, 332, 351, 352, 362, 392, 400, 406, 408, 410, 425, 432, 447, 449, 450, 466, 484, 488, 490, 497, 498, 509, 512, 522, 532, 534, 573, 585, 593, 595
Offset: 1

Views

Author

Michel Marcus, Apr 15 2022

Keywords

Comments

These are also the indices k such that A352992(k+1) < A352992(k).

Examples

			3 is a term because A225401(3) = 0; and we have A352992(4)=753 < A352992(3)=1753.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(n=0, list = List()); for(i=1, nn, m=7*(10^i-1)/9; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); if (x==0, listput(list, i-1)); break;););); Vec(list);} \\ after A225401

A309600 Digits of the 10-adic integer (17/9)^(1/3).

Original entry on oeis.org

7, 1, 6, 8, 7, 0, 3, 3, 3, 6, 5, 2, 7, 8, 7, 2, 6, 7, 1, 1, 0, 3, 3, 2, 4, 5, 6, 5, 3, 6, 5, 3, 3, 3, 7, 5, 2, 4, 7, 5, 0, 2, 9, 0, 6, 7, 0, 8, 8, 6, 6, 7, 0, 1, 2, 4, 5, 3, 2, 8, 6, 9, 7, 3, 1, 6, 6, 9, 5, 0, 1, 6, 4, 6, 8, 0, 3, 8, 5, 9, 6, 1, 3, 5, 3, 7, 9, 7, 2, 3, 6, 6, 9, 0, 0, 0, 5, 3, 7, 7, 2
Offset: 0

Views

Author

Seiichi Manyama, Aug 09 2019

Keywords

Examples

			      7^3 == 3      (mod 10).
     17^3 == 13     (mod 10^2).
    617^3 == 113    (mod 10^3).
   8617^3 == 1113   (mod 10^4).
  78617^3 == 11113  (mod 10^5).
  78617^3 == 111113 (mod 10^6).
		

Crossrefs

10-adic integer x.
A225404 (x^3 = ...000003).
A225405 (x^3 = ...000007).
A225406 (x^3 = ...000009).
A153042 (x^3 = ...111111).
this sequence (x^3 = ...111113).
A309601 (x^3 = ...111117).
A309602 (x^3 = ...111119).
A309603 (x^3 = ...222221).
A225410 (x^3 = ...222223).
A309604 (x^3 = ...222227).
A309605 (x^3 = ...222229).
A309606 (x^3 = ...333331).
A225402 (x^3 = ...333333).
A309569 (x^3 = ...333337).
A309570 (x^3 = ...333339).
A309595 (x^3 = ...444441).
A309608 (x^3 = ...444443).
A309609 (x^3 = ...444447).
A309610 (x^3 = ...444449).
A309611 (x^3 = ...555551).
A309612 (x^3 = ...555553).
A309613 (x^3 = ...555557).
A309614 (x^3 = ...555559).
A309640 (x^3 = ...666661).
A309641 (x^3 = ...666663).
A225411 (x^3 = ...666667).
A309642 (x^3 = ...666669).
A309643 (x^3 = ...777771).
A309644 (x^3 = ...777773).
A225401 (x^3 = ...777777).
A309645 (x^3 = ...777779).
A309646 (x^3 = ...888881).
A309647 (x^3 = ...888883).
A309648 (x^3 = ...888887).
A225412 (x^3 = ...888889).
A225409 (x^3 = ...999991).
A225408 (x^3 = ...999993).
A225407 (x^3 = ...999997).

Programs

  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((17/9+O(2^N))^(1/3), 2^N), Mod((17/9+O(5^N))^(1/3), 5^N)))), N)
    
  • Ruby
    def A309600(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 17)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A309600(100)

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 17) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

A225410 10-adic integer x such that x^3 = 7/9.

Original entry on oeis.org

7, 4, 2, 9, 3, 3, 0, 0, 1, 6, 6, 7, 2, 0, 5, 8, 6, 3, 0, 4, 4, 6, 0, 9, 7, 1, 9, 4, 2, 6, 8, 7, 9, 6, 8, 0, 5, 7, 1, 0, 6, 6, 9, 8, 6, 4, 9, 0, 9, 8, 5, 9, 0, 5, 9, 6, 5, 2, 1, 5, 3, 4, 6, 7, 2, 4, 4, 1, 6, 3, 2, 6, 1, 4, 1, 0, 2, 7, 0, 0, 5, 4, 1, 7, 9, 6, 4, 1, 3, 2, 1, 0, 4, 6, 1, 5, 6, 1, 5, 2
Offset: 0

Views

Author

Aswini Vaidyanathan, May 07 2013

Keywords

Comments

This is the 10's complement of A225401.

Examples

			       7^3 == 3      (mod 10).
      47^3 == 23     (mod 10^2).
     247^3 == 223    (mod 10^3).
    9247^3 == 2223   (mod 10^4).
   39247^3 == 22223  (mod 10^5).
  339247^3 == 222223 (mod 10^6).
		

Crossrefs

Programs

  • PARI
    n=0; for(i=1, 100, m=(2*(10^i-1)/9)+1; for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break)))
    
  • PARI
    N=100; Vecrev(digits(lift(chinese(Mod((7/9+O(2^N))^(1/3), 2^N), Mod((7/9+O(5^N))^(1/3), 5^N)))), N) \\ Seiichi Manyama, Aug 05 2019
    
  • Ruby
    def A225410(n)
      ary = [7]
      a = 7
      n.times{|i|
        b = (a + 3 * (9 * a ** 3 - 7)) % (10 ** (i + 2))
        ary << (b - a) / (10 ** (i + 1))
        a = b
      }
      ary
    end
    p A225410(100) # Seiichi Manyama, Aug 13 2019

Formula

Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 7) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - Seiichi Manyama, Aug 13 2019

A306552 Expansion of the 10-adic cube root of -1/7, that is, the 10-adic integer solution to x^3 = -1/7.

Original entry on oeis.org

3, 9, 5, 5, 4, 0, 3, 8, 3, 9, 1, 6, 4, 7, 2, 6, 5, 2, 9, 6, 2, 4, 5, 7, 0, 0, 9, 0, 6, 1, 9, 3, 8, 2, 5, 1, 4, 1, 8, 4, 1, 0, 2, 4, 4, 7, 8, 5, 0, 6, 2, 4, 3, 8, 4, 2, 0, 2, 4, 7, 3, 3, 4, 7, 1, 9, 9, 3, 5, 3, 9, 7, 0, 4, 4, 6, 3, 7, 7, 1, 7, 6, 3, 5, 5, 9, 6
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A319739.

Examples

			3^3 == 7 == -1/7 (mod 10).
93^3 == 57 == -1/7 (mod 100).
593^3 == 857 == -1/7 (mod 1000).
5593^3 == 2857 == -1/7 (mod 10000).
...
...619383045593^3 = ...142857142857 = ...999999999999/7 = -1/7.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: this sequence (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1, 3], padic:-rootp(7*x^3+1, 10, 100)); # Robert Israel, Mar 31 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/7 + O(5^n))^(1/3), 5^n), Mod((-1/7 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A319739(n) for n >= 2.

A306553 Expansion of the 10-adic cube root of -1/11, that is, the 10-adic integer solution to x^3 = -1/11.

Original entry on oeis.org

9, 6, 8, 2, 3, 8, 1, 4, 2, 0, 2, 0, 6, 9, 8, 3, 8, 9, 4, 5, 4, 0, 6, 0, 0, 9, 6, 8, 6, 1, 3, 4, 7, 8, 0, 6, 6, 7, 1, 6, 5, 5, 3, 6, 4, 9, 9, 0, 2, 7, 1, 7, 4, 2, 6, 5, 1, 4, 0, 6, 9, 0, 7, 0, 8, 7, 8, 1, 4, 1, 2, 6, 6, 9, 4, 2, 5, 3, 5, 7, 4, 9, 6, 4, 4, 0, 5
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A319740.

Examples

			9^3 == 9 == -1/11 (mod 10).
69^3 == 9 == -1/11 (mod 100).
869^3 == 909 == -1/11 (mod 1000).
2869^3 == 909 == -1/11 (mod 10000).
...
...020241832869^3 = ...090909090909 = ...999999999999/11 = -1/11.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: this sequence (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(11*x^3+1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/11 + O(5^n))^(1/3), 5^n), Mod((-1/11 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A319740(n) for n >= 2.

A306554 Expansion of the 10-adic cube root of 1/13, that is, the 10-adic integer solution to x^3 = 1/13.

Original entry on oeis.org

3, 5, 6, 4, 1, 9, 3, 2, 8, 7, 4, 0, 8, 3, 6, 5, 7, 7, 0, 9, 8, 2, 7, 5, 1, 4, 8, 0, 9, 5, 1, 6, 0, 6, 2, 1, 3, 2, 2, 6, 4, 2, 7, 0, 6, 8, 6, 1, 3, 3, 2, 2, 0, 0, 1, 5, 6, 7, 9, 6, 2, 7, 8, 4, 2, 6, 3, 6, 3, 0, 1, 0, 4, 5, 5, 6, 6, 1, 3, 5, 4, 3, 3, 3, 1, 7, 0
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A306555.

Examples

			3^3 == 7 == 1/13 (mod 10).
53^3 == 77 == 1/13 (mod 100).
653^3 == 77 == 1/13 (mod 1000).
4653^3 == 3077 == 1/13 (mod 10000).
...
...047823914653^3 = ...923076923077 = 1 + (...999999999999)*(12/13) = 1 - 12/13 = 1/13.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: A306555 (p=-1), this sequence (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(13*x^3-1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((1/13 + O(5^n))^(1/3), 5^n), Mod((1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A306555(n) for n >= 2.

A306555 Expansion of the 10-adic cube root of -1/13, that is, the 10-adic integer solution to x^3 = -1/13.

Original entry on oeis.org

7, 4, 3, 5, 8, 0, 6, 7, 1, 2, 5, 9, 1, 6, 3, 4, 2, 2, 9, 0, 1, 7, 2, 4, 8, 5, 1, 9, 0, 4, 8, 3, 9, 3, 7, 8, 6, 7, 7, 3, 5, 7, 2, 9, 3, 1, 3, 8, 6, 6, 7, 7, 9, 9, 8, 4, 3, 2, 0, 3, 7, 2, 1, 5, 7, 3, 6, 3, 6, 9, 8, 9, 5, 4, 4, 3, 3, 8, 6, 4, 5, 6, 6, 6, 8, 2, 9
Offset: 1

Views

Author

Jianing Song, Feb 23 2019

Keywords

Comments

10's complement of A306554.

Examples

			7^3 == 3 == -1/13 (mod 10).
47^3 == 23 == -1/13 (mod 100).
347^3 == 923 == -1/13 (mod 1000).
5347^3 == 6923 == -1/13 (mod 10000).
...
...952176085347^3 = ...076923076923 = ...999999999999/13 = -1/13.
		

Crossrefs

10-adic cube root of p/q:
q=1: A225409 (p=-9), A225408 (p=-7), A225407 (p=-3), A225404 (p=3), A225405 (p=7), A225406 (p=9);
q=3: A225402 (p=-1), A225411 (p=1);
q=7: A306552 (p=-1), A319739 (p=1);
q=9: A225401 (p=-7), A153042 (p=-1), A225412 (p=1), A225410 (p=7);
q=11: A306553 (p=-1), A319740 (p=1);
q=13: this sequence (p=-1), A306554 (p=1).

Programs

  • Maple
    op([1,3],padic:-rootp(13*x^3+1,10,100)); # Robert Israel, Mar 24 2019
  • PARI
    seq(n)={Vecrev(digits(lift(chinese( Mod((-1/13 + O(5^n))^(1/3), 5^n), Mod((-1/13 + O(2^n))^(1/3), 2^n)))), n)} \\ Following Andrew Howroyd's code for A319740.

Formula

a(n) = 9 - A306554(n) for n >= 2.

A352992 Smallest positive integer whose cube ends with exactly n 7's.

Original entry on oeis.org

1, 3, 53, 1753, 753, 60753, 660753, 9660753, 99660753, 899660753, 3899660753, 33899660753, 233899660753, 7233899660753, 97233899660753, 497233899660753, 1497233899660753, 31497233899660753, 631497233899660753, 9631497233899660753, 59631497233899660753, 559631497233899660753
Offset: 0

Views

Author

Bernard Schott, Apr 14 2022

Keywords

Comments

When A225401(k) = 0, i.e. k is a term of A353003, then a(k) > a(k+1); 1st example is for k = 3 with a(3) = 1753 > a(4) = 753; otherwise, a(n) < a(n+1).
When n <> k, a(n) coincides with the 'backward concatenation' of A225401(n-1) up to A225401(0), where A225401 is the 10-adic integer x such that x^3 = -7/9 (see table in Example section); when n= k, a(k) must be calculated directly with the definition.
Without "exactly" in the name, terms a'(n) should be: 1, 3, 53, 753, 753, 60753, 660753, ...
There are similar sequences when cubes end with 1, 3, 8 or 9; but there's no similar sequence for squares, because when a square ends in more than three identical digits, these digits are necessarily 0.

Examples

			a(1) = 3 because 3^3 = 27;
a(2) = 53 because 53^2 = 148877;
a(3) = 1753 because 1753^3 = 5386984777;
a(4) = 753 because 753^2 = 426957777;
a(5) = 60753 because 60753^3 = 224234888577777.
Table with a(n) and A225401(n-1)
   ---------------------------------------------------------------------------
   |    |     a(n)       |      a'(n)        | A225401(n-1) |  concatenation |
   | n  | with "exactly" | without "exactly" |  = b(n-1)    |  b(n-1)...b(0) |
   ---------------------------------------------------------------------------
     0           1                 1
     1           3                 3               3                  ...3
     2          53                53               5                 ...53
     3        1753               753               7                ...753
     4         753               753               0               ...0753
     5       60753             60753               6              ...60753
     6      660753            660753               6             ...660753
     7     9660753           9660753               9            ...9660753
  ..........................................................................
Also, as A225401(23) = 0, we have from a(21) up to a(25):
a(21) =     559631497233899660753;
a(22) =    3559631497233899660753;
a(23) =  193559631497233899660753, found by _Marius A. Burtea_;
a(24) =   93559631497233899660753;
a(25) = 2093559631497233899660753.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,x;
           t:= 7/9*(10^n-1);
           x:= rhs(op(msolve(x^3=t,10^n)));
           while x^3 mod 10^(n+1) = 10*t+7 do x:= x + 10^n od;
           x
    end proc:
    f(0):= 1:
    map(f, [$0..30]); # Robert Israel, Jul 29 2025
  • Python
    def a(n):
        k, s, target = 1, "1", "7"*n
        while s.rstrip("7") + target != s: k += 1; s = str(k**3)
        return k
    print([a(n) for n in range(8)]) # Michael S. Branicky, Apr 14 2022

Formula

When n is not in A353003, a(n) = Sum_{k=0..n-1} A225401(k) * 10^k.

Extensions

a(8)-a(9) from Marius A. Burtea, Apr 14 2022
Showing 1-8 of 8 results.