A319750 a(n) is the denominator of the Heron sequence with h(0) = 3.
1, 3, 33, 3927, 55602393, 11147016454528647, 448011292165037607943004375755833, 723685043824607606355691108666081531638582859833105061571146291527
Offset: 0
Examples
A078370(2) = 29. hd(0) = A041047(0) = 1, hd(1) = A041047(3) = 5, hd(2) = A041047(5) = 135, hd(3) = A041047(13) = 38145.
Programs
-
Maple
hn[0]:=3: hd[0]:=1: for n from 1 to 6 do hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2: hd[n]:=hn[n-1]*hd[n-1]: printf("%5d%40d%40d\n", n, hn[n], hd[n]): end do:
-
Python
def aupton(nn): hn, hd, alst = 3, 1, [1] for n in range(nn): hn, hd = (hn**2 + 13*hd**2)//2, hn*hd alst.append(hd) return alst print(aupton(7)) # Michael S. Branicky, Mar 15 2022
Formula
h(n) = hn(n)/hd(n), hn(0) = 3, hd(0) = 1.
hn(n+1) = (hn(n)^2 + 13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
a(0) = 1, a(1) = 3 and a(n) = 2*T(2^(n-2), 11/2)*a(n-1) for n >= 2, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Mar 16 2022
Extensions
a(5) corrected and terms a(6) and a(7) added by Peter Bala, Mar 15 2022
Comments