cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319780 a(n) is the period of cyclic structures that appear in the 3-state (0,1,2) 1D cellular automaton started from a single cell at state 1 with rule n.

Original entry on oeis.org

2, 2, 1, 0, 2, 1, 0, 2, 1, 2, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 0, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 0, 2, 1, 0, 2, 1
Offset: 1

Views

Author

Philipp O. Tsvetkov, Sep 27 2018

Keywords

Comments

The length of the sequence is equal to 3^3^3 = 7625597484987.

Examples

			1D cellular automaton with rule=1 gives the following generations:
   1  ..........1.......... <------ start
   2  111111111...111111111 <------ end
   3  ..........1..........
   4  111111111...111111111
   5  ..........1..........
   6  111111111...111111111
   7  ..........1..........
The period is 2, thus a(1) = 2.
For rule=150:
   1  ..........1..... <------ start
   2  .........22..... <------ end
   3  ........1.......
   4  .......22.......
   5  ......1.........
   6  .....22.........
   7  ....1...........
The period is 2, thus a(150) = 2.
For rule=100000000797:
   1  .........1....... <------ start
   2  ........2.2......
   3  ........111......
   4  .......2.112.....
   5  .......12........
   6  ......21.........
   7  ........2........ <------ end
   8  ........1........
   9  .......2.2.......
  10  .......111.......
  11  ......2.112......
  12  ......12.........
  13  .....21..........
  14  .......2.........
  15  .......1.........
The period is 7, thus a(100000000797) = 7.
a(10032729) = 12.
a(10096524) = 16.
		

Crossrefs

Cf. A180001.

Programs

  • Mathematica
    Table[
      Length[
      Last[
       FindTransientRepeat[(Internal`DeleteTrailingZeros[
            Reverse[Internal`DeleteTrailingZeros[#]]]) & /@
         CellularAutomaton[{i, 3}, {ConstantArray[0, 25], {1}, ConstantArray[0, 25]} // Flatten, 50], 2]]],
    {i, 1, 1000}
    ]