cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319799 Number of partitions of 2n into exactly n positive triangular numbers.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 3, 4, 3, 5, 5, 7, 5, 7, 7, 9, 9, 9, 11, 12, 14, 14, 14, 17, 17, 21, 20, 23, 24, 27, 28, 31, 32, 36, 37, 42, 43, 47, 50, 53, 58, 61, 64, 69, 72, 82, 83, 91, 92, 102, 107, 115, 118, 128, 135, 147, 152, 159, 169, 181
Offset: 0

Views

Author

Alois P. Heinz, Sep 28 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0,
          `if`(issqr(8*n+1), n, h(n-1)))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
          `if`(i*kn, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
        end:
    a:= n-> b(2*n, h(2*n), n):
    seq(a(n), n=0..80);
  • Mathematica
    h[n_] := h[n] = If[n < 1, 0, If[IntegerQ@Sqrt[8*n + 1], n, h[n - 1]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0], If[i*k < n || k > n, 0, b[n, h[i - 1], k] + b[n - i, h[Min[n - i, i]], k - 1]]];
    a[n_] := b[2n, h[2n], n];
    a /@ Range[0, 80] (* Jean-François Alcover, Mar 12 2021, after Alois P. Heinz *)

Formula

a(n) = [x^(2n) y^n] 1/Product_{j>=1} (1-y*x^A000217(j)).
a(n) = A319797(2n,n).
G.f.: Product_{k>=1} 1 / (1 - x^(k*(k + 3)/2)). - Ilya Gutkovskiy, Jan 31 2021