A319822 Number of solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = n.
1, 2, 2, 4, 2, 4, 12, 8, 18, 14, 4, 28, 12, 24, 32, 0, 34, 20, 14, 28, 4, 32, 44, 40, 28, 10, 40, 56, 64, 72, 8, 48, 66, 24, 68, 8, 46, 88, 60, 32, 4, 52, 64, 116, 76, 12, 64, 72, 60, 82, 26, 72, 104, 104, 88, 8, 112, 56, 136, 140, 8, 136, 96, 72, 98, 16, 72, 132
Offset: 0
Keywords
Examples
a(5) = 4 because 0^2 + 2*0^2 + 5*0^2 + 5*1^2 = 0^2 + 2*0^2 + 5*0^2 + 5*(-1)^2 = 0^2 + 2*0^2 + 5*1^2 + 5*0^2 = 0^2 + 2*0^2 + 5*(-1)^2 + 5*0^2 = 5 and these are the only four solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = 5.
References
- J. H. Conway, Universal quadratic forms and the fifteen theorem, Contemporary Mathematics 272 (1999), 23-26.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- L. E. Dickson, Integers represented by positive ternary quadratic forms, Bulletin of the American Mathematical Society, 1927, 33(1):63-70.
- H. D. Kloosterman, On the representation of numbers in the form ax^2 + by^2 + cz^2 + dt^2, Acta Mathematica, 1927, 49(3-4):407-464.
- S. Ramanujan, On the expression of a number in the form ax^2 + by^2 + cz^2 + du^2, Proc. Camb. Phil. Soc. 19 (1917), 11-21.
Crossrefs
From Seiichi Manyama, Oct 07 2018: (Start)
54 possible choice:
k | a, b, c, d | Number of solutions
------+-----------------+--------------------
1 | 1, 1, 1, 1 | A000118
2 | 1, 1, 1, 2 | A236928
3 | 1, 1, 1, 3 | A236926
4 | 1, 1, 1, 4 | A236923
5 | 1, 1, 1, 5 | A236930
6 | 1, 1, 1, 6 | A236931
7 | 1, 1, 1, 7 | A236932
8 | 1, 1, 2, 2 | A097057
9 | 1, 1, 2, 3 | A320124
10 | 1, 1, 2, 4 | A320125
11 | 1, 1, 2, 5 | A320126
12 | 1, 1, 2, 6 | A320127
13 | 1, 1, 2, 7 | A320128
14 | 1, 1, 2, 8 | A320130
15 | 1, 1, 2, 9 | A320131
16 | 1, 1, 2, 10 | A320132
17 | 1, 1, 2, 11 | A320133
18 | 1, 1, 2, 12 | A320134
19 | 1, 1, 2, 13 | A320135
20 | 1, 1, 2, 14 | A320136
21 | 1, 1, 3, 3 | A034896
22 | 1, 1, 3, 4 | A272364
23 | 1, 1, 3, 5 | A320147
24 | 1, 1, 3, 6 | A320148
25 | 1, 2, 2, 2 | A320149
26 | 1, 2, 2, 3 | A320150
27 | 1, 2, 2, 4 | A236924
28 | 1, 2, 2, 5 | A320151
29 | 1, 2, 2, 6 | A320152
30 | 1, 2, 2, 7 | A320153
31 | 1, 2, 3, 3 | A320138
32 | 1, 2, 3, 4 | A320139
33 | 1, 2, 3, 5 | A320140
34 | 1, 2, 3, 6 | A033712
35 | 1, 2, 3, 7 | A320188
36 | 1, 2, 3, 8 | A320189
37 | 1, 2, 3, 9 | A320190
38 | 1, 2, 3, 10 | A320191
39 | 1, 2, 4, 4 | A320193
40 | 1, 2, 4, 5 | A320194
41 | 1, 2, 4, 6 | A320195
42 | 1, 2, 4, 7 | A320196
43 | 1, 2, 4, 8 | A033720
44 | 1, 2, 4, 9 | A320197
45 | 1, 2, 4, 10 | A320198
46 | 1, 2, 4, 11 | A320199
47 | 1, 2, 4, 12 | A320200
48 | 1, 2, 4, 13 | A320201
49 | 1, 2, 4, 14 | A320202
50 | 1, 2, 5, 6 | A320163
51 | 1, 2, 5, 7 | A320164
52 | 1, 2, 5, 8 | A320165
53 | 1, 2, 5, 9 | A320166
54 | 1, 2, 5, 10 | A033722
(End)
Programs
-
Maple
JT := (k, n) -> JacobiTheta3(0, x^k)^n: A319822List := proc(len) series(JT(1,1)*JT(2,1)*JT(5,2), x, len+1); seq(coeff(%, x, j), j=0..len) end: A319822List(67); # Peter Luschny, Oct 01 2018
-
Mathematica
CoefficientList[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^2] EllipticTheta[ 3, 0, q^5]^2 + O[q]^100, q] (* Jean-François Alcover, Jun 15 2019 *)
-
PARI
A004018(n) = if(n, 4*sumdiv(n,d,kronecker(-4,d)), 1); A033715(n) = if(n, 2*sumdiv(n,d,kronecker(-2,d)), 1); a(n) = my(i=0); for(k=0, n\5, i+=A004018(k)*A033715(n-5*k)); i
-
PARI
N=99; q='q+O('q^N); gf = (eta(q^2)*eta(q^4))^3*eta(q^10)^10/(eta(q)*eta(q^5)^2*eta(q^8)*eta(q^20)^2)^2; Vec(gf) \\ Altug Alkan, Oct 01 2018
-
Sage
Q = DiagonalQuadraticForm(ZZ, [1, 2, 5, 5]) Q.theta_series(68).list() # Peter Luschny, Oct 01 2018
Comments