A319826 GCD of the strict integer partition with FDH number n; GCD of the indices (in A050376) of Fermi-Dirac prime factors of n.
0, 1, 2, 3, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 2, 9, 10, 1, 11, 1, 1, 1, 12, 1, 13, 1, 2, 1, 14, 1, 15, 1, 1, 1, 1, 3, 16, 1, 2, 1, 17, 1, 18, 1, 2, 1, 19, 1, 20, 1, 2, 1, 21, 1, 1, 1, 1, 1, 22, 1, 23, 1, 1, 3, 4, 1, 24, 1, 2, 1, 25, 1, 26, 1, 1, 1, 1, 1, 27, 1, 28
Offset: 1
Keywords
Examples
45 is the FDH number of (6,4), which has GCD 2, so a(45) = 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
nn=200; FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]]; FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList]; GCD@@@Table[Reverse[FDfactor[n]/.FDrules],{n,nn}]
-
PARI
A319826(n) = { my(i=1,g=0,x=A052331(n)); while(x,if(x%2,g = gcd(g,i)); x>>=1; i++); (g); }; \\ (Uses the program given in A052331) - Antti Karttunen, Feb 18 2023
Formula
For all n >= 1, a(A050376(n)) = n. - Antti Karttunen, Feb 18 2023
Extensions
Secondary definition added by Antti Karttunen, Feb 18 2023
Comments