A319829
FDH numbers of strict integer partitions of odd numbers.
Original entry on oeis.org
2, 4, 6, 7, 10, 11, 12, 16, 18, 19, 20, 21, 25, 26, 30, 31, 33, 34, 35, 36, 41, 46, 47, 48, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 68, 71, 74, 75, 78, 79, 80, 83, 86, 88, 90, 91, 92, 93, 95, 97, 98, 99, 102, 103, 105, 108, 109, 116, 118, 119, 121, 123, 125
Offset: 1
The sequence of all strict integer partitions of odd numbers begins: (1), (3), (2,1), (5), (4,1), (7), (3,2), (9), (6,1), (11), (4,3), (5,2), (13), (8,1), (4,2,1), (15), (7,2), (10,1), (5,4), (6,3), (17), (12,1), (19), (9,2), (8,3), (21), (6,2,1), (7,4), (5,3,1), (11,2), (14,1), (4,3,2).
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],OddQ[Total[FDfactor[#]/.FDrules]]&]
A319828
FDH numbers of strict integer partitions of even numbers.
Original entry on oeis.org
1, 3, 5, 8, 9, 13, 14, 15, 17, 22, 23, 24, 27, 28, 29, 32, 37, 38, 39, 40, 42, 43, 44, 45, 49, 50, 51, 59, 62, 64, 65, 66, 67, 69, 70, 72, 73, 76, 77, 81, 82, 84, 85, 87, 89, 94, 96, 100, 101, 104, 106, 107, 110, 111, 112, 113, 114, 115, 117, 120, 122, 124
Offset: 1
The sequence of all strict integer partitions of even numbers begins: (), (2), (4), (3,1), (6), (8), (5,1), (4,2), (10), (7,1), (12), (3,2,1), (6,2), (5,3), (14), (9,1), (16).
-
nn=200;
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}:>2^(m-1)]]]]];
FDprimeList=Array[FDfactor,nn,1,Union];FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],EvenQ[Total[FDfactor[#]/.FDrules]]&]
A327905
FDH numbers of pairwise coprime sets.
Original entry on oeis.org
2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 55, 56, 57, 58, 62, 63, 66, 68, 70, 74, 75, 76, 77, 80, 82, 84, 86, 88, 91, 93, 94, 95, 96, 98, 99, 100, 104, 106, 110, 112, 114, 116, 118, 122, 123, 125, 126, 132
Offset: 1
The sequence of terms together with their corresponding coprime sets begins:
2: {1}
6: {1,2}
8: {1,3}
10: {1,4}
12: {2,3}
14: {1,5}
18: {1,6}
20: {3,4}
21: {2,5}
22: {1,7}
24: {1,2,3}
26: {1,8}
28: {3,5}
32: {1,9}
33: {2,7}
34: {1,10}
35: {4,5}
38: {1,11}
40: {1,3,4}
42: {1,2,5}
- Wolfram Language Documentation, CoprimeQ
Heinz numbers of pairwise coprime partitions are
A302696 (all),
A302797 (strict),
A302569 (with singletons), and
A302798 (strict with singletons).
FDH numbers of relatively prime sets are
A319827.
-
FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
nn=100;FDprimeList=Array[FDfactor,nn,1,Union];
FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
Showing 1-3 of 3 results.
Comments