A319852 Difference between 3^n and the product of primes less than or equal to n.
0, 2, 7, 21, 75, 213, 699, 1977, 6351, 19473, 58839, 174837, 529131, 1564293, 4752939, 14318877, 43016691, 128629653, 386909979, 1152561777, 3477084711, 10450653513, 31371359919, 93920085957, 282206443611, 847065516573, 2541642735459, 7625374392117, 22876569362091
Offset: 0
Keywords
Examples
3^5 = 243. The primes less than or equal to 5 are: 2, 3, 5. Then 2 * 3 * 5 = 30 and hence a(5) = 243 - 30 = 213.
Links
- Barkley Rosser, "Explicit Bounds for Some Functions of Prime Numbers", Amer. J. Math., 1941, 63 (1) p. 228, Lemma 21.
- J. Barkley Rosser, Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 1962, 64-94.
Programs
-
Mathematica
Table[3^n - Times@@Select[Range[n], PrimeQ], {n, 0, 26}]
-
PARI
a(n) = 3^n-factorback(primes(primepi(n))) \\ David A. Corneth, Oct 22 2018
Formula
a(n) = 3^n - n#, where n# = A034386(n) is the product of the primes less than or equal to n.
Extensions
Many thanks to Amiram Eldar for several bibliographic citations on this topic.
Comments