A319857 Difference between 4^n and the product of primes less than or equal to n.
0, 3, 14, 58, 250, 994, 4066, 16174, 65326, 261934, 1048366, 4191994, 16774906, 67078834, 268405426, 1073711794, 4294937266, 17179358674, 68718966226, 274868207254, 1099501928086, 4398036811414, 17592176344726, 70368521084794, 281474753617786, 1125899683749754, 4503599404277626
Offset: 0
Keywords
Examples
4^5 = 1024. The primes less than or equal to 5 are 2, 3, and 5. Then 2 * 3 * 5 = 30 and hence a(5) = 1024 - 30 = 994.
Links
- Erdős Pál, "Ramanujan and I" Number Theory, Madras 1987. Springer, Berlin, Heidelberg, 1989. 1-17.
- Leo Moser, "On the product of the primes not exceeding n", Canad. Math. Bull. 2 (1959), 119 - 121.
Programs
-
Maple
restart; with(NumberTheory); a := n -> 4^n-product(ithprime(i), i = 1 .. PrimeCounting(n)): 0, seq(a(n), n = 1 .. 15); # Stefano Spezia, Nov 06 2018
-
Mathematica
Table[4^n - Times@@Select[Range[n], PrimeQ], {n, 0, 31}]
-
PARI
a034386(n) = my(v=primes(primepi(n))); prod(i=1, #v, v[i]) \\ after Charles R Greathouse IV in A034386 a(n) = 4^n - a034386(n) \\ Felix Fröhlich, Nov 04 2018
Formula
a(n) = 4^n - n#, where n# is the product of primes less than or equal to n (see A034386).
Comments