cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A319915 Smallest member of bi-unitary sociable quadruples.

Original entry on oeis.org

162, 1026, 1620, 10098, 10260, 41800, 51282, 100980, 107920, 512820, 1479006, 4612720, 4938136, 14790060, 14800240, 23168840, 28158165, 32440716, 55204500, 81128632, 84392560, 88886448, 209524210, 283604220, 325903500, 498215416, 572062304, 881697520
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2018

Keywords

Comments

The bi-unitary version of A090615.

Examples

			162 is in the sequence since the iterations of the sum of bi-unitary proper divisors function (A188999(n) - n) are cyclic with a period of 4: 162, 174, 186, 198, 162, ... and 162 is the smallest member of the quadruple.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_]:=If[Mod[e, 2]==1, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)];
    bs[n_] := If[n==1, 1, Times @@ (fun @@@ FactorInteger[n])]-n;seq[n_]:=NestList [bs, n,4][[2;;5]] ;aQ[n_] := Module[ {s=seq[n]}, n==Min[s] && Count[s,n]==1]; Do[If[aQ[n],Print[n]],{n,1,10^9}]
  • PARI
    fn(n) = {if (n==1, 1, f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f) - n;);}
    isok(n) = my(v = vector(5)); v[1] = n; for(k=2, 5, v[k] = fn(v[k-1])); (v[5] == n) && (vecmin(v) == n) && (#vecsort(v,,8)==4); \\ Michel Marcus, Oct 02 2018
    
  • PARI
    is(n) = my(c = n); for(i = 1, 3, c = fn(c); if(c <= n, return(0))); c = fn(c); c == n \\ uses Michel Marcus' fn David A. Corneth, Oct 02 2018