A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.
1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0
Examples
[ 0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 [ 1] 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, ... A010815 [ 2] 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, ... A002107 [ 3] 1, -3, 0, 5, 0, 0, -7, 0, 0, 0, ... A010816 [ 4] 1, -4, 2, 8, -5, -4, -10, 8, 9, 0, ... A000727 [ 5] 1, -5, 5, 10, -15, -6, -5, 25, 15, -20, ... A000728 [ 6] 1, -6, 9, 10, -30, 0, 11, 42, 0, -70, ... A000729 [ 7] 1, -7, 14, 7, -49, 21, 35, 41, -49, -133, ... A000730 [ 8] 1, -8, 20, 0, -70, 64, 56, 0, -125, -160, ... A000731 [ 9] 1, -9, 27, -12, -90, 135, 54, -99, -189, -85, ... A010817 [10] 1, -10, 35, -30, -105, 238, 0, -260, -165, 140, ... A010818 A001489, v , A167541, v , A319931, v , diagonal: A008705 A080956 A319930 A319932
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.
Links
- M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389. MR1955423 (2003k:11071)
- Steven R. Finch, Powers of Euler's q-Series, arXiv:math/0701251 [math.NT], 2007.
- Vaclav Kotesovec, The integration of q-series
- Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- M. Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. [Annotated scanned copy]
- Tim Silverman, Counting Cliques in Finite Distant Graphs, arXiv preprint arXiv:1612.08085 [math.CO], 2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Programs
-
Julia
# DedekindEta is defined in A000594 for n in 0:10 DedekindEta(10, n) |> println end
-
Maple
DedekindEta := (x, n) -> mul(1-x^j, j=1..n): A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1): seq(coeff(%, x, j), j=0..len-1) end: seq(print([n], A319933row(n, 10)), n=0..10);
-
Mathematica
eta[x_, n_] := Product[1 - x^j, {j, 1, n}]; A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
-
Sage
from sage.modular.etaproducts import qexp_eta def A319933row(n, len): return (qexp_eta(ZZ['q'], len+4)^n).list()[:len] for n in (0..10): print(A319933row(n, 10))
Comments