A319998 a(n) = Sum_{d|n, d is even} mu(n/d)*d, where mu(n) is Moebius function A008683.
0, 2, 0, 2, 0, 4, 0, 4, 0, 8, 0, 4, 0, 12, 0, 8, 0, 12, 0, 8, 0, 20, 0, 8, 0, 24, 0, 12, 0, 16, 0, 16, 0, 32, 0, 12, 0, 36, 0, 16, 0, 24, 0, 20, 0, 44, 0, 16, 0, 40, 0, 24, 0, 36, 0, 24, 0, 56, 0, 16, 0, 60, 0, 32, 0, 40, 0, 32, 0, 48, 0, 24, 0, 72, 0, 36, 0, 48, 0, 32, 0, 80, 0, 24, 0, 84, 0, 40, 0, 48, 0, 44, 0, 92, 0, 32, 0, 84, 0, 40, 0, 64, 0, 48, 0
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
Rest[CoefficientList[Series[Sum[2*MoebiusMu[k]*x^(2*k)/(1 - x^(2*k))^2, {k, 1, 100}], {x, 0, 100}], x]] (* Vaclav Kotesovec, Nov 03 2018 *)
-
PARI
A319998(n) = sumdiv(n,d,(!(d%2))*moebius(n/d)*d);
-
PARI
A319998(n) = if(n%2, 0, 2*eulerphi(n/2));
Formula
a(2n) = 2*A000010(n), a(2n+1) = 0.
G.f.: Sum_{k>=1} 2*mu(k)*x^(2*k)/(1 - x^(2*k))^2. - Ilya Gutkovskiy, Nov 02 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/(2*Pi^2) = 0.151981... . - Amiram Eldar, Nov 12 2022