cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320000 Square array A(n, k) read by descending antidiagonals: A(1, 1) = 2, A(1, k) = 1 for k > 1, and for n > 1, A(n, k) = Sum_{d|n, d>=k} A010051(1+d)*[Sum_{i=0..valuation(n,1+d)} A((n/d)/((1+d)^i), 1+d)].

Original entry on oeis.org

2, 1, 3, 1, 1, 0, 1, 0, 0, 4, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 4, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 5, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2018

Keywords

Comments

This square array gives the values obtained from the recursive PARI-program that M. F. Hasler has provided Oct 05 2009 for A014197, in its two-argument form.

Examples

			Array begins as:
n  | k=1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16, ...
---+------------------------------------------------
1  |   2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2  |   3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
3  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
4  |   4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
5  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
6  |   4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
7  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
8  |   5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
9  |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
10 |   2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
11 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
12 |   6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, ...
13 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
14 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
15 |   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
16 |   6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
		

Crossrefs

Cf. A014197 (column 1).

Programs

  • PARI
    up_to = 120;
    A320000sq(n, k) = if(1==n, if(1==k,2,1), sumdiv(n, d, if(d>=k && isprime(d+1), my(p=d+1, q=n/d); sum(i=0, valuation(n, p), A320000sq(q/(p^i), p))))); \\ After M. F. Hasler's code in A014197
    A320000list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A320000sq(col,(a-(col-1))))); (v); };
    v320000 = A320000list(up_to);
    A320000(n) = v320000[n];