cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A320009 a(0) = 1; for n > 0, a(n) = A000005(n) * a(n-A000005(n)), where A000005(n) gives the number of divisors of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 8, 8, 12, 24, 32, 48, 48, 96, 128, 192, 240, 384, 288, 768, 768, 1536, 1152, 3072, 1920, 3456, 4608, 12288, 6912, 24576, 9216, 49152, 27648, 98304, 36864, 196608, 110592, 393216, 147456, 786432, 221184, 1572864, 294912, 3145728, 884736, 4718592, 1179648, 9437184, 1474560, 3538944, 5308416, 37748736, 7077888, 75497472
Offset: 0

Views

Author

Antti Karttunen, Nov 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, #2 #1[[-#2]] ] & @@ {#, DivisorSigma[0, Length@ #]} &, {1}, 53] (* Michael De Vlieger, Nov 25 2018 *)
  • PARI
    A320009(n) = if(0==n,1,numdiv(n)*A320009(n-numdiv(n)));

Formula

a(0) = 1; for n > 0, a(n) = A000005(n) * a(n-A000005(n)).

A320002 a(0) = 1; for n > 0, a(n) = A002828(n) * a(n-A002828(n)), where A002828(n) is the least number of squares that add up to n.

Original entry on oeis.org

1, 1, 2, 3, 3, 6, 9, 12, 18, 18, 36, 54, 54, 108, 162, 216, 216, 432, 432, 648, 864, 1296, 1944, 2592, 3888, 3888, 7776, 11664, 15552, 23328, 34992, 46656, 69984, 104976, 139968, 209952, 209952, 419904, 629856, 839808, 1259712, 1679616, 2519424, 3779136, 5038848, 7558272, 11337408, 15116544, 22674816, 22674816, 45349632
Offset: 0

Views

Author

Antti Karttunen, Nov 24 2018

Keywords

Comments

Product of A002828(x) computed over all x encountered when map x -> x - A002828(x) is iterated, starting from x = n, until 0 is reached.
Sequence is monotonic because A255131 is monotonic.
All terms are 3-smooth (A003586).

Crossrefs

Programs

  • Mathematica
    Nest[Append[#1, #2 #1[[-#2]] ] & @@ {#, If[First@ # > 0, 1, Length@ First@ Split@ # + 1] &@ SquaresR[Range@ 4, Length@ #]} &, {1}, 50] (* Michael De Vlieger, Nov 25 2018, after Harvey P. Dale at A002828 *)
  • PARI
    istwo(n:int) = { my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1 };
    isthree(n:int) = { my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7 };
    A002828(n) = if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))); \\ From A002828
    A255131(n) = (n-A002828(n));
    A320002(n) = { my(m=1, v); while(n>0, v = A002828(n); m *= v; n -= v); (m); };
    
  • PARI
    A320002(n) = if(0==n,1,A002828(n)*A320002(n-A002828(n)));

Formula

a(0) = 1; for n > 0, a(n) = A002828(n) * a(n-A002828(n)).
Showing 1-2 of 2 results.