cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A320011 Filter sequence combined from those proper divisors d of n for which +1 == d (mod 3); Restricted growth sequence transform of A319991.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 6, 2, 7, 2, 8, 2, 9, 2, 2, 4, 3, 2, 10, 6, 5, 2, 4, 2, 11, 2, 2, 2, 9, 4, 12, 2, 13, 2, 2, 2, 14, 10, 2, 2, 5, 2, 15, 4, 9, 6, 16, 2, 17, 2, 18, 2, 3, 2, 19, 20, 21, 4, 6, 2, 22, 2, 2, 2, 14, 2, 23, 2, 11, 2, 8, 24, 25, 15, 2, 10, 9, 2, 26, 2, 27, 2, 28, 2, 29, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A320001(i) = A320001(j),
a(i) = a(j) => A293897(i) = A293897(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320011 = rgs_transform(vector(up_to,n,A319991(n)));
    A320011(n) = v320011[n];

A320012 Filter sequence combined from those proper divisors d of n for which 2 == d (mod 3); Restricted growth sequence transform of A319992.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 4, 5, 1, 2, 1, 3, 1, 6, 1, 5, 4, 2, 1, 7, 1, 3, 1, 5, 8, 9, 4, 2, 1, 2, 1, 10, 1, 7, 1, 6, 4, 11, 1, 5, 1, 3, 12, 13, 1, 2, 14, 15, 1, 16, 1, 17, 1, 2, 1, 18, 4, 6, 1, 9, 19, 20, 1, 5, 1, 2, 4, 21, 8, 13, 1, 10, 1, 22, 1, 7, 23, 2, 24, 25, 1, 3, 1, 11, 1, 26, 4, 18, 1, 7, 8, 27, 1, 9, 1, 28, 29
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A320005(i) = A320005(j),
a(i) = a(j) => A293898(i) = A293898(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320012 = rgs_transform(vector(up_to,n,A319992(n)));
    A320012(n) = v320012[n];

A320010 Filter sequence combined from those proper divisors of n that are multiples of 3; Restricted growth sequence transform of A319990.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 5, 1, 1, 6, 1, 1, 7, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 9, 1, 1, 10, 1, 1, 11, 1, 1, 2, 1, 1, 12, 1, 1, 2, 1, 1, 13, 1, 1, 14, 1, 1, 15, 1, 1, 2, 1, 1, 16, 1, 1, 4, 1, 1, 17, 1, 1, 18, 1, 1, 19, 1, 1, 2, 1, 1, 20, 1, 1, 2, 1, 1, 21, 1, 1, 22, 1, 1, 23, 1, 1, 24
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A320003(i) = A320003(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319990(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320010 = rgs_transform(vector(up_to,n,A319990(n)));
    A320010(n) = v320010[n];

A320013 Filter sequence constructed from the binary expansions of those proper divisors of n that are not multiples of 3.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 2, 5, 2, 4, 2, 6, 7, 8, 2, 3, 2, 9, 10, 11, 2, 8, 7, 12, 2, 13, 2, 14, 2, 15, 16, 17, 18, 4, 2, 19, 20, 21, 2, 22, 2, 23, 7, 24, 2, 15, 10, 25, 26, 27, 2, 3, 28, 29, 30, 31, 2, 32, 2, 33, 10, 34, 35, 36, 2, 37, 38, 39, 2, 8, 2, 40, 41, 42, 43, 44, 2, 45, 2, 46, 2, 47, 48, 49, 50, 51, 2, 14, 52, 53, 54, 55, 56, 34, 2, 57, 16, 58, 2, 59, 2, 60, 61
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A319991(n), A319992(n)].
For all i, j: a(i) = a(j) => A320015(i) = A320015(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320013 = rgs_transform(vector(up_to,n,[A319991(n),A319992(n)]));
    A320013(n) = v320013[n];
Showing 1-4 of 4 results.