cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A320011 Filter sequence combined from those proper divisors d of n for which +1 == d (mod 3); Restricted growth sequence transform of A319991.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 6, 2, 7, 2, 8, 2, 9, 2, 2, 4, 3, 2, 10, 6, 5, 2, 4, 2, 11, 2, 2, 2, 9, 4, 12, 2, 13, 2, 2, 2, 14, 10, 2, 2, 5, 2, 15, 4, 9, 6, 16, 2, 17, 2, 18, 2, 3, 2, 19, 20, 21, 4, 6, 2, 22, 2, 2, 2, 14, 2, 23, 2, 11, 2, 8, 24, 25, 15, 2, 10, 9, 2, 26, 2, 27, 2, 28, 2, 29, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A320001(i) = A320001(j),
a(i) = a(j) => A293897(i) = A293897(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320011 = rgs_transform(vector(up_to,n,A319991(n)));
    A320011(n) = v320011[n];

A320012 Filter sequence combined from those proper divisors d of n for which 2 == d (mod 3); Restricted growth sequence transform of A319992.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 4, 5, 1, 2, 1, 3, 1, 6, 1, 5, 4, 2, 1, 7, 1, 3, 1, 5, 8, 9, 4, 2, 1, 2, 1, 10, 1, 7, 1, 6, 4, 11, 1, 5, 1, 3, 12, 13, 1, 2, 14, 15, 1, 16, 1, 17, 1, 2, 1, 18, 4, 6, 1, 9, 19, 20, 1, 5, 1, 2, 4, 21, 8, 13, 1, 10, 1, 22, 1, 7, 23, 2, 24, 25, 1, 3, 1, 11, 1, 26, 4, 18, 1, 7, 8, 27, 1, 9, 1, 28, 29
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A320005(i) = A320005(j),
a(i) = a(j) => A293898(i) = A293898(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320012 = rgs_transform(vector(up_to,n,A319992(n)));
    A320012(n) = v320012[n];

A320014 Filter sequence combining the binary expansions of proper divisors of n, grouped by their residue classes mod 3.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 7, 2, 8, 2, 9, 10, 11, 2, 12, 2, 13, 14, 15, 2, 16, 17, 18, 19, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 28, 29, 2, 30, 2, 31, 32, 33, 2, 34, 35, 36, 37, 38, 2, 39, 40, 41, 42, 43, 2, 44, 2, 45, 46, 47, 48, 49, 2, 50, 51, 52, 2, 53, 2, 54, 55, 56, 57, 58, 2, 59, 60, 61, 2, 62, 63, 64, 65, 66, 2, 67, 68, 69, 70, 71, 72, 73, 2, 74, 75
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

Restricted growth sequence transform of triple [A319990(n), A319991(n), A319992(n)], or equally, of ordered pair [A320010(n), A320013(n)].
Apart from trivial cases of primes, all other duplicates in range 1 .. 65537 seem to be squarefree semiprimes of the form 3k+1, i.e., both prime factors are either of the form 3k+1 or of the form 3k+2. Question: Is there any reason that more complicated cases would not occur later?
For all i, j: a(i) = a(j) => A293215(i) = A293215(j).
Differs from A319693 first for n = 108. - Georg Fischer, Oct 16 2018

Examples

			The first set of numbers that forms a nontrivial equivalence class is [295, 583, 799, 943] = [5*59, 11*53, 17*47, 23*41]. The prime factors in these are all of the form 3k+2, and when the binary expansions of the factors (like e.g., "101" for 5 and "111011" for 59 or "10111" for 23 and "101001" for 41) are overlaid, the resulting bit vector is always [1, 1, 1, 1, 1, 1^2], with the least significant bit-position containing 2 copies of 1's. Thus we have a(295) = a(583) = a(799) = a(943).
		

Crossrefs

Differs from A305800 for the first time at n=583, where a(583) = 234, while A305800(478).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319990(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320014 = rgs_transform(vector(up_to,n,[A319990(n),A319991(n),A319992(n)]));
    A320014(n) = v320014[n];
Showing 1-3 of 3 results.