cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320067 Expansion of Product_{k>0} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 106, 152, 202, 258, 370, 478, 602, 828, 1042, 1332, 1758, 2198, 2758, 3572, 4448, 5518, 7012, 8636, 10654, 13350, 16362, 19946, 24722, 30070, 36478, 44776, 54010, 65202, 79234, 95196, 114166, 137686, 164530, 196252, 235308, 279718, 332002
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ..., a_n) to the equation a_1^2 + 2*a_2^2 + ... + n*a_n^2 = n.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[(&*[(1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2: j in [1..Floor(2*m/k)]]): k in [1..2*m]]))); // G. C. Greubel, Oct 29 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[EllipticTheta[3, 0, x^k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 05 2018 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 05 2018 *)
  • PARI
    m=50; x='x+O('x^m); Vec(1/(prod(k=1,2*m, prod(j=1,floor(2*m/k), (1 - x^(k*j))*(1 + x^(k*j))^3/(1 + x^(2*k*j))^2 )))) \\ G. C. Greubel, Oct 29 2018
    

Formula

Expansion of Product_{k>0} eta(q^(2*k))^5 / (eta(q^k)*eta(q^(4*k)))^2.
a(n) ~ log(2)^(3/8) * exp(Pi*sqrt(n*log(2))) / (4 * Pi^(1/4) * n^(7/8)). - Vaclav Kotesovec, Oct 05 2018
Expansion of Product_{k>0} theta_4(q^(2*k))/theta_4(q^(2*k-1)), where theta_4() is the Jacobi theta function. - Seiichi Manyama, Oct 26 2018