cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A320070 Expansion of 1/(theta_3(q) * theta_3(q^2) * theta_3(q^3)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, -2, 2, -6, 14, -20, 32, -60, 98, -150, 232, -360, 558, -828, 1196, -1776, 2614, -3700, 5238, -7480, 10516, -14592, 20180, -27832, 38216, -51970, 70184, -94842, 127612, -170140, 226164, -300324, 396754, -521520, 683484, -893432, 1164330, -1511188, 1954756, -2524188
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Product[EllipticTheta[3, 0, q^k], {k, 1, 3}], {q, 0, 80}], q] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    q='q+O('q^80); Vec(1/prod(k=1,3, eta(q^(2*k))^5/(eta(q^k)* eta(q^(4*k)))^2 )) \\ G. C. Greubel, Oct 29 2018

Formula

Convolution inverse of A029594.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (4*sqrt(6)*n^(3/2)). - Vaclav Kotesovec, Oct 05 2018