A320076 a(n) is smallest positive integer i such that difference of numerator and denominator of sum of j^(-i), when j=1..n and n > 2, is prime.
1, 1, 2, 1, 1, 2, 32, 1
Offset: 3
Crossrefs
Cf. A320077.
Programs
-
Mathematica
a[n_] := Do[s = HarmonicNumber[n, r]; If[PrimeQ[Numerator[s] - Denominator[s]], Return[r]], {r, 1, Infinity}]; Table[a[n], {n, 3, 10}] (* Vaclav Kotesovec, Nov 14 2018 *)
-
PARI
a(n)={for(i=1, +oo, s=sum(j=1, n, j^(-i)); p=numerator(s); q=denominator(s); if(ispseudoprime(p-q), return(i)))};
Comments