cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A320292 Zerofree numbers k such that the product (m+n)*p, where m,n are the first and the last digits of k, and p is the number which is the part of k between m and n, is a divisor of k.

Original entry on oeis.org

126, 162, 212, 216, 234, 413, 432, 672, 864, 891, 918, 2112, 2132, 2176, 2691, 2772, 2871, 2912, 3168, 4144, 4199, 4224, 4455, 5184, 6336, 8448, 21372, 21771, 23391, 43673, 53768, 55328, 64116, 171432, 228177, 316764, 412272, 515484, 594342, 638715, 663832, 824544, 1588248, 5136248, 7222932
Offset: 1

Views

Author

Anton Deynega, Oct 09 2018

Keywords

Comments

This sequence is infinite since it contains all the terms of the form 6*(10^(6*t)+20)/35 and 33*(10^(6*t)*75+2)/7 for t > 0. The first pattern corresponds to terms 171432, 171428571432, 171428571428571432, ..., the second to terms 353571438, 353571428571438, 353571428571428571438,... . - Giovanni Resta, Oct 10 2018

Examples

			234 is divisible by 3*(2+4).
4199 is divisible by 19*(4+9).
7222932 is divisible by 22293*(7+2).
		

Crossrefs

Intersection of A052382 and A320121.

Programs

  • Mathematica
    Select[Range[100, 10^6], And[FreeQ[#2, 0], Mod[#1, If[#2 == 0, #1 - 1, #2] & @@ {#1, (First@ #2 + Last@ #2) FromDigits@ Most@ Rest@ #2}] == 0] & @@ {#, IntegerDigits@ #} &] (* Michael De Vlieger, Oct 11 2018 *)
  • PARI
    isok(n) = {d = digits(n); if ((#d >= 3) && vecmin(d), x = d[1]; y = d[#d]; w = vector(#d-2, k, d[k+1]); z = fromdigits(w); if (z, return (!(n % (z*(x+y))))); ); return (0); } \\ Michel Marcus, Oct 10 2018
Showing 1-1 of 1 results.