cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Anton Deynega

Anton Deynega's wiki page.

Anton Deynega has authored 5 sequences.

A321281 a(n) is the number of primes of the form p*10^n + q, where p, q are the digits from 1 to 9.

Original entry on oeis.org

21, 15, 13, 8, 9, 5, 3, 8, 8, 2, 2, 3, 2, 0, 2, 2, 2, 3, 2, 5, 1, 4, 0, 3, 1, 1, 1, 2, 2, 0, 2, 0, 0, 0, 2, 2, 1, 1, 3, 1, 0, 2, 0, 0, 3, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 2, 1, 0, 2, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1
Offset: 1

Author

Anton Deynega, Nov 10 2018

Keywords

Examples

			a(6) = 5 because there are five primes of the form p*10^6 + q where p, q are the digits from 1 to 9: 1000003, 2000003, 7000003, 7000009, 8000009.
		

Crossrefs

Cf. A000040.

Programs

  • Maple
    f:= n -> nops(select(isprime,[seq(seq(p*10^n+q,p=1..9),q=[1,3,7, 9])])):
    map(f, [$1..100]); # Robert Israel, Nov 14 2018
  • Mathematica
    a[n_]:=(c=0; Do[ Do[ If[PrimeQ[i*10^n+j], c++], {i,1,9}], {j,1,9,2}]; c); Array[a, 20] (* Amiram Eldar, Nov 14 2018 *)
  • PARI
    a(n)={my(t=10^n); sum(i=1, 9, sum(j=1, 5, isprime(2*j-1+i*t)))} \\ Andrew Howroyd, Nov 10 2018

Extensions

a(16)-a(86) from Andrew Howroyd, Nov 10 2018

A320292 Zerofree numbers k such that the product (m+n)*p, where m,n are the first and the last digits of k, and p is the number which is the part of k between m and n, is a divisor of k.

Original entry on oeis.org

126, 162, 212, 216, 234, 413, 432, 672, 864, 891, 918, 2112, 2132, 2176, 2691, 2772, 2871, 2912, 3168, 4144, 4199, 4224, 4455, 5184, 6336, 8448, 21372, 21771, 23391, 43673, 53768, 55328, 64116, 171432, 228177, 316764, 412272, 515484, 594342, 638715, 663832, 824544, 1588248, 5136248, 7222932
Offset: 1

Author

Anton Deynega, Oct 09 2018

Keywords

Comments

This sequence is infinite since it contains all the terms of the form 6*(10^(6*t)+20)/35 and 33*(10^(6*t)*75+2)/7 for t > 0. The first pattern corresponds to terms 171432, 171428571432, 171428571428571432, ..., the second to terms 353571438, 353571428571438, 353571428571428571438,... . - Giovanni Resta, Oct 10 2018

Examples

			234 is divisible by 3*(2+4).
4199 is divisible by 19*(4+9).
7222932 is divisible by 22293*(7+2).
		

Crossrefs

Intersection of A052382 and A320121.

Programs

  • Mathematica
    Select[Range[100, 10^6], And[FreeQ[#2, 0], Mod[#1, If[#2 == 0, #1 - 1, #2] & @@ {#1, (First@ #2 + Last@ #2) FromDigits@ Most@ Rest@ #2}] == 0] & @@ {#, IntegerDigits@ #} &] (* Michael De Vlieger, Oct 11 2018 *)
  • PARI
    isok(n) = {d = digits(n); if ((#d >= 3) && vecmin(d), x = d[1]; y = d[#d]; w = vector(#d-2, k, d[k+1]); z = fromdigits(w); if (z, return (!(n % (z*(x+y))))); ); return (0); } \\ Michel Marcus, Oct 10 2018

A320121 Numbers k such that the product (m+n)*p, where m,n are the first and the last digits of k, and p is the number which is the part of k between m and n, is a divisor of k.

Original entry on oeis.org

110, 120, 126, 140, 150, 162, 210, 212, 216, 220, 234, 240, 250, 360, 413, 432, 480, 510, 520, 540, 550, 630, 672, 864, 891, 918, 1010, 1020, 1040, 1050, 1062, 1080, 1100, 1200, 1250, 1400, 1500, 2010, 2012, 2016, 2020, 2034, 2040, 2050, 2072, 2079, 2080, 2100, 2112, 2132, 2176, 2200, 2250, 2400, 2500
Offset: 1

Author

Anton Deynega, Oct 06 2018

Keywords

Comments

The sequence is infinite if one considers numbers like 10........010 (with N zeros between ones, N = 0, 1, 2, ...). The problem of looking for odd terms and zerofree terms remains. Still unclear is whether the sequence contains infinitely many zerofree terms. The proportions between numbers of N-digit numbers included in the sequence need to be explored.

Examples

			234 is divisible by 3*(2+4).
1020 is divisible by 2*(1+0).
1062 is divisible by 6*(1+2).
1250 is divisible by 25*(1+0).
		

Crossrefs

Cf. A320292 (zeroless terms).

Programs

  • Mathematica
    Select[Range[100, 2500], Mod[#1, If[#2 == 0, #1 - 1, #2] & @@ {#1, (First@ #2 + Last@ #2) FromDigits@ Most@ Rest@ #2}] == 0 & @@ {#, IntegerDigits@ #} &] (* Michael De Vlieger, Oct 11 2018 *)
  • PARI
    isok(n) = {d = digits(n); if (#d >= 3, x = d[1]; y = d[#d]; w = vector(#d-2, k, d[k+1]); z = fromdigits(w); if (z, return (!(n % (z*(x+y)))));); return (0);} \\ Michel Marcus, Oct 07 2018

A319858 a(n) is the number of values of m in the interval [2,10] such that the base-m expansion of n, interpreted as a base-10 number, yields a prime.

Original entry on oeis.org

0, 8, 8, 1, 7, 1, 5, 2, 2, 3, 3, 1, 3, 0, 2, 2, 3, 0, 4, 0, 2, 2, 4, 0, 2, 1, 1, 2, 3, 0, 3, 0, 3, 2, 1, 0, 4, 1, 3, 0, 2, 0, 5, 0, 1, 1, 3, 1, 1, 1, 0, 1, 2, 0, 4, 1, 1, 1, 3, 0, 3, 0, 1, 1, 1, 1, 4, 1, 0, 0, 5, 0, 2, 0, 2, 0, 1, 0, 4, 0, 1, 1, 3, 1, 1, 0, 2, 1, 3, 0, 2, 0, 2, 2, 1, 0, 3, 0, 0, 0
Offset: 1

Author

Anton Deynega, Sep 29 2018

Keywords

Examples

			a(31)=3 because 31 yields primes for 3 bases in [2,10]:  31 = 11111_2 = 1011_3 = 133_4 = 111_5 = 51_6 = 43_7 = 37_8 = 34_9 = 31_10, and of the decimal numbers 11111, 1011, 133, 111, 51, 43, 37, 34, and 31, the 3 primes are 43, 37, and 31.
		

Crossrefs

Cf. A052026 (where a(n) is 0).

Programs

A319809 Numbers k that are equal to 2*k when expressed in base 9 and then interpreted in base 10.

Original entry on oeis.org

7794416, 7816758, 8131871, 8132006, 8152638, 8152650
Offset: 1

Author

Anton Deynega, Sep 28 2018

Keywords

Examples

			8132006 expressed in base 9 is equal to 16264012; 16264012 = 2*8132006.
		

Crossrefs

Cf. A139285.

Programs

  • Mathematica
    Select[Range[10^6, 10^7], FromDigits@ IntegerDigits[#, 9] == 2 # &] (* Michael De Vlieger, Oct 11 2018 *)
  • PARI
    isok(n) = fromdigits(digits(n,9), 10) == 2*n; \\ Michel Marcus, Sep 28 2018